Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233578

RESUMO

Spectroscopic techniques based on Distributed FeedBack (DFB) Quantum Cascade Lasers (QCL) provide good results for gas detection in the mid-infrared region in terms of sensibility and selectivity. The main limitation is the QCL relatively low tuning range (~10 cm-1) that prevents from monitoring complex species with broad absorption spectra in the infrared region or performing multi-gas sensing. To obtain a wider tuning range, the first solution presented in this paper consists of the use of a DFB QCL array. Tuning ranges from 1335 to 1387 cm-1 and from 2190 to 2220 cm-1 have been demonstrated. A more common technique that will be presented in a second part is to implement a Fabry-Perot QCL chip in an external-cavity (EC) system so that the laser could be tuned on its whole gain curve. The use of an EC system also allows to perform Intra-Cavity Laser Absorption Spectroscopy, where the gas sample is placed within the laser resonator. Moreover, a technique only using the QCL compliance voltage technique can be used to retrieve the spectrum of the gas inside the cavity, thus no detector outside the cavity is needed. Finally, a specific scheme using an EC coherent QCL array can be developed. All these widely-tunable Quantum Cascade-based sources can be used to demonstrate the development of optical gas sensors.

2.
Opt Lett ; 42(18): 3646-3649, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914923

RESUMO

Gigabit free-space transmissions are experimentally demonstrated with a quantum cascaded laser (QCL) emitting at mid-wavelength infrared of 4.65 µm, and a commercial infrared photovoltaic detector. The QCL operating at room temperature is directly modulated using on-off keying and, for the first time, to the best of our knowledge, four- and eight-level pulse amplitude modulations (PAM-4, PAM-8). By applying pre- and post-digital equalizations, we achieve up to 3 Gbit/s line data rate in all three modulation configurations with a bit error rate performance of below the 7% overhead hard decision forward error correction limit of 3.8×10-3. The proposed transmission link also shows a stable operational performance in the lab environment.

3.
Opt Lett ; 42(1): 105-108, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28059186

RESUMO

We demonstrate low-loss Ge-rich Si0.2Ge0.8 waveguides on Si1-xGex (x from 0 to 0.79) graded substrates operating in the mid-infrared wavelength range at λ=4.6 µm. Propagation losses as low as (1.5±0.5)dB/cm and (2±0.5)dB/cm were measured for the quasi-TE and quasi-TM polarizations, respectively. A total coupling loss (input/output) of only 10 dB was found for waveguide widths larger than 7 µm due to a good fiber-waveguide mode matching. Near-field optical mode profiles measured at the output waveguide facet allowed us to inspect the optical mode and precisely measure the modal effective area of each waveguide providing a good correlation between experiments and simulations. These results put forward the potential of low-index-contrast Si1-xGex waveguides with high Ge concentration as fundamental blocks for mid-infrared photonic integrated circuits.

4.
Opt Express ; 23(16): 20288-96, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26367884

RESUMO

We report the monolithic integration of a 15-channel multiplexer on indium phosphide. It covers the 7.1-to-8.5 µm wavelength range suitable for combining the outputs of several individual lasers. The fabrication is compatible with the growth of active layers, therefore enabling a fully integrate broadband laser source in the mid-infrared spectral range. Channels are accurately spaced in wavelength (97 nm) in good agreement with design.

5.
ACS Omega ; 9(17): 19127-19135, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708224

RESUMO

Ammonia (NH3) toxicity, stemming from nitrification, can adversely affect aquatic life and influence the taste and odor of drinking water. This underscores the necessity for highly responsive and accurate sensors to continuously monitor NH3 levels in water, especially in complex environments, where reliable sensors have been lacking until this point. Herein, we detail the development of a sensor comprising a compact and selective analyzer with low gas consumption and a timely response based on photoacoustic spectroscopy. This, combined with an automated liquid sampling system, enables the precise detection of ammonia traces in water. The sensor system incorporates a state-of-the art quantum cascade laser as the excitation source emitting at 9 µm in resonance with the absorption line of NH3 located at 1103.46 cm-1. Our instrument demonstrated detection sensitivity at a low ppm level for the ammonia molecule with response times of less than 60 s. For the sampling system, an ammonia stripping solution was designed, resulting in a prompt full measurement cycle (6.35 min). A further evaluation of the sensor within a pilot study showed good reliability and agreement with the reference method for real water samples, confirming the potential of our NH3 analyzer for water quality monitoring applications.

6.
Nat Commun ; 12(1): 3327, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099658

RESUMO

Mid-infrared free-space optical communication has a large potential for high speed communication due to its immunity to electromagnetic interference. However, data security against eavesdroppers is among the obstacles for private free-space communication. Here, we show that two uni-directionally coupled quantum cascade lasers operating in the chaotic regime and the synchronization between them allow for the extraction of the information that has been camouflaged in the chaotic emission. This building block represents a key tool to implement a high degree of privacy directly on the physical layer. We realize a proof-of-concept communication at a wavelength of 5.7 µm with a message encryption at a bit rate of 0.5 Mbit/s. Our demonstration of private free-space communication between a transmitter and receiver opens strategies for physical encryption and decryption of a digital message.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa