Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
PLoS Genet ; 20(3): e1011059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466775

RESUMO

RpoS is an alternative sigma factor needed for the induction of the general stress response in many gammaproteobacteria. Tight regulation of RpoS levels and activity is required for bacterial growth and survival under stress. In Escherichia coli, various stresses lead to higher levels of RpoS due to increased translation and decreased degradation. During non-stress conditions, RpoS is unstable, because the adaptor protein RssB delivers RpoS to the ClpXP protease. RpoS degradation is prevented during stress by the sequestration of RssB by anti-adaptors, each of which is induced in response to specific stresses. Here, we examined how the stabilization of RpoS is reversed during recovery of the cell from stress. We found that RpoS degradation quickly resumes after recovery from phosphate starvation, carbon starvation, and when transitioning from stationary phase back to exponential phase. This process is in part mediated by the anti-adaptor IraP, known to promote RpoS stabilization during phosphate starvation via the sequestration of adaptor RssB. The rapid recovery from phosphate starvation is dependent upon a feedback loop in which RpoS transcription of rssB, encoding the adaptor protein, plays a critical role. Crl, an activator of RpoS that specifically binds to and stabilizes the complex between the RNA polymerase and RpoS, is also required for the feedback loop to function efficiently, highlighting a critical role for Crl in restoring RpoS basal levels.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Retroalimentação , Fator sigma/genética , Fator sigma/metabolismo , Fosfatos/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 120(49): e2311509120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011569

RESUMO

Bacterial small RNAs (sRNAs) regulate gene expression by base-pairing with their target mRNAs. In Escherichia coli and many other bacteria, this process is dependent on the RNA chaperone Hfq, a mediator for sRNA-mRNA annealing. YhbS (renamed here as HqbA), a putative Gcn5-related N-acetyltransferase (GNAT), was previously identified as a silencer of sRNA signaling in a genomic library screen. Here, we studied how HqbA regulates sRNA signaling and investigated its physiological roles in modulating Hfq activity. Using fluorescent reporter assays, we found that HqbA overproduction suppressed all tested Hfq-dependent sRNA signaling. Direct interaction between HqbA and Hfq was demonstrated both in vivo and in vitro, and mutants that blocked the interaction interfered with HqbA suppression of Hfq. However, an acetylation-deficient HqbA mutant still disrupted sRNA signaling, and HqbA interacted with Hfq at a site far from the active site. This suggests that HqbA may be bifunctional, with separate roles for regulating via Hfq interaction and for acetylation of undefined substrates. Gel shift assays revealed that HqbA strongly reduced the interaction between the Hfq distal face and low-affinity RNAs but not high-affinity RNAs. Comparative RNA immunoprecipitation of Hfq and sequencing showed enrichment of two tRNA precursors, metZWV and proM, by Hfq in mutants that lost the HqbA-Hfq interaction. Our results suggest that HqbA provides a level of quality control for Hfq by competing with low-affinity RNA binders.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo
3.
J Biol Chem ; 299(8): 104943, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343699

RESUMO

The specialized sigma factor RpoS mediates a general stress response in Escherichia coli and related bacteria, activating promoters that allow cells to survive stationary phase and many stresses. RpoS synthesis and stability are regulated at multiple levels. Translation of RpoS is positively regulated by multiple small RNAs in response to stress. Degradation of RpoS, dependent upon the adaptor protein RssB, is rapid during exponential growth and ceases upon starvation or other stresses, increasing accumulation of RpoS. E. coli carrying mutations that block the synthesis of polyamines were previously found to have low levels of RpoS, while levels increased rapidly when polyamines were added. We have used a series of reporters to examine the basis for the lack of RpoS in polyamine-deficient cells. The polyamine requirement was independent of small RNA-mediated positive regulation of RpoS translation. Mutations in rssB stabilize RpoS and significantly bypassed the polyamine deficit, suggesting that lack of polyamines might lead to rapid RpoS degradation. However, rates of degradation of mature RpoS were unaffected by polyamine availability. Codon optimization in rpoS partially relieved the polyamine dependence, suggesting a defect in RpoS translation in the absence of polyamines. Consistent with this, a hyperproofreading allele of ribosomal protein S12, encoded by rpsL, showed a decrease in RpoS levels, and this decrease was also suppressed by either codon optimization or blocking RpoS degradation. We suggest that rpoS codon usage leads it to be particularly sensitive to slowed translation, due to either lack of polyamines or hyperproofreading, leading to cotranslational degradation. We dedicate this study to Herb Tabor and his foundational work on polyamines, including the basis for this study.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Poliaminas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Poliaminas/metabolismo , Estresse Fisiológico , Proteólise , Fases de Leitura Aberta/genética
4.
J Biol Chem ; 299(12): 105440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949227

RESUMO

In enterobacteria such as Escherichia coli, the general stress response is mediated by σs, the stationary phase dissociable promoter specificity subunit of RNA polymerase. σs is degraded by ClpXP during active growth in a process dependent on the RssB adaptor, which is thought to be stimulated by the phosphorylation of a conserved aspartate in its N-terminal receiver domain. Here we present the crystal structure of full-length RssB bound to a beryllofluoride phosphomimic. Compared to the structure of RssB bound to the IraD anti-adaptor, our new RssB structure with bound beryllofluoride reveals conformational differences and coil-to-helix transitions in the C-terminal region of the RssB receiver domain and in the interdomain segmented helical linker. These are accompanied by masking of the α4-ß5-α5 (4-5-5) "signaling" face of the RssB receiver domain by its C-terminal domain. Critically, using hydrogen-deuterium exchange mass spectrometry, we identify σs-binding determinants on the 4-5-5 face, implying that this surface needs to be unmasked to effect an interdomain interface switch and enable full σs engagement and hand-off to ClpXP. In activated receiver domains, the 4-5-5 face is often the locus of intermolecular interactions, but its masking by intramolecular contacts upon phosphorylation is unusual, emphasizing that RssB is a response regulator that undergoes atypical regulation.


Assuntos
Proteínas de Ligação a DNA , Endopeptidase Clp , Proteínas de Escherichia coli , Escherichia coli , Proteólise , Fator sigma , Fatores de Transcrição , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Ativação Enzimática , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Fosforilação , Domínios Proteicos , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
5.
Nucleic Acids Res ; 50(3): 1718-1733, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35104863

RESUMO

Hfq, a bacterial RNA chaperone, stabilizes small regulatory RNAs (sRNAs) and facilitates sRNA base-pairing with target mRNAs. Hfq has a conserved N-terminal domain and a poorly conserved disordered C-terminal domain (CTD). In a transcriptome-wide examination of the effects of a chromosomal CTD deletion (Hfq1-65), the Escherichia coli mutant was most defective for the accumulation of sRNAs that bind the proximal and distal faces of Hfq (Class II sRNAs), but other sRNAs also were affected. There were only modest effects on the levels of mRNAs, suggesting little disruption of sRNA-dependent regulation. However, cells expressing Hfq lacking the CTD in combination with a weak distal face mutation were defective for the function of the Class II sRNA ChiX and repression of mutS, both dependent upon distal face RNA binding. Loss of the region between amino acids 66-72 was critical for this defect. The CTD region beyond amino acid 72 was not necessary for distal face-dependent regulation, but was needed for functions associated with the Hfq rim, seen most clearly in combination with a rim mutant. Our results suggest that the C-terminus collaborates in various ways with different binding faces of Hfq, leading to distinct outcomes for individual sRNAs.


Assuntos
Proteínas de Escherichia coli , Fator Proteico 1 do Hospedeiro , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34210798

RESUMO

As key players of gene regulation in many bacteria, small regulatory RNAs (sRNAs) associated with the RNA chaperone Hfq shape numerous phenotypic traits, including metabolism, stress response and adaptation, as well as virulence. sRNAs can alter target messenger RNA (mRNA) translation and stability via base pairing. sRNA synthesis is generally under tight transcriptional regulation, but other levels of regulation of sRNA signaling are less well understood. Here we used a fluorescence-based functional screen to identify regulators that can quench sRNA signaling of the iron-responsive sRNA RyhB in Escherichia coli The identified regulators fell into two classes, general regulators (affecting signaling by many sRNAs) and RyhB-specific regulators; we focused on the specific ones here. General regulators include three Hfq-interacting sRNAs, CyaR, ChiX, and McaS, previously found to act through Hfq competition, RNase T, a 3' to 5' exonuclease not previously implicated in sRNA degradation, and YhbS, a putative GCN5-related N-acetyltransferase (GNAT). Two specific regulators were identified. AspX, a 3'end-derived small RNA, specifically represses RyhB signaling via an RNA sponging mechanism. YicC, a previously uncharacterized but widely conserved protein, triggers rapid RyhB degradation via collaboration with the exoribonuclease PNPase. These findings greatly expand our knowledge of regulation of bacterial sRNA signaling and suggest complex regulatory networks for controlling iron homeostasis in bacteria. The fluorescence-based genetic screen system described here is a powerful tool expected to accelerate the discovery of novel regulators of sRNA signaling in many bacteria.


Assuntos
Escherichia coli/genética , Inativação Gênica , Testes Genéticos , RNA Bacteriano/genética , Transdução de Sinais , Acetiltransferases/metabolismo , Cromossomos Bacterianos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluorescência , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Genoma Bacteriano , Plasmídeos/genética , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/metabolismo , Transdução de Sinais/genética
7.
Annu Rev Microbiol ; 72: 111-139, 2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-29897834

RESUMO

RcsB, a response regulator of the FixJ/NarL family, is at the center of a complex network of regulatory inputs and outputs. Cell surface stress is sensed by an outer membrane lipoprotein, RcsF, which regulates interactions of the inner membrane protein IgaA, lifting negative regulation of a phosphorelay. In vivo evidence supports a pathway in which histidine kinase RcsC transfers phosphate to phosphotransfer protein RcsD, resulting in phosphorylation of RcsB. RcsB acts either alone or in combination with RcsA to positively regulate capsule synthesis and synthesis of small RNA (sRNA) RprA as well as other genes, and to negatively regulate motility. RcsB in combination with other FixJ/NarL auxiliary proteins regulates yet other functions, independent of RcsB phosphorylation. Proper expression of Rcs and its targets is critical for success of Escherichia coli commensal strains, for proper development of biofilm, and for virulence in some pathogens. New understanding of how the Rcs phosphorelay works provides insight into the flexibility of the two-component system paradigm.


Assuntos
Cápsulas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Locomoção , Complexos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Pequeno RNA não Traduzido/metabolismo , Regulon
8.
PLoS Genet ; 16(7): e1008610, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716926

RESUMO

Two-component systems and phosphorelays play central roles in the ability of bacteria to rapidly respond to changing environments. In E. coli and related enterobacteria, the complex Rcs phosphorelay is a critical player in the bacterial response to antimicrobial peptides, beta-lactam antibiotics, and other disruptions at the cell surface. The Rcs system is unusual in that an inner membrane protein, IgaA, is essential due to its negative regulation of the RcsC/RcsD/RcsB phosphorelay. While it is known that IgaA transduces signals from the outer membrane lipoprotein RcsF, how it interacts with the phosphorelay has remained unknown. Here we performed in vivo interaction assays and genetic dissection of the critical proteins and found that IgaA interacts with the phosphorelay protein RcsD, and that this interaction is necessary for regulation. Interactions between IgaA and RcsD within their respective periplasmic domains of these two proteins anchor repression of signaling. However, the signaling response depends on a second interaction between cytoplasmic loop 1 of IgaA and a truncated Per-Arndt-Sim (PAS-like) domain in RcsD. A single point mutation in the PAS-like domain increased interactions between the two proteins and blocked induction of the phosphorelay. IgaA may regulate RcsC, the histidine kinase that initiates phosphotransfer through the phosphorelay, indirectly, via its contacts with RcsD. Unlike RcsD, and unlike many other histidine kinases, the periplasmic domain of RcsC is dispensable for the response to signals that induce the Rcs phosphorelay system. The multiple contacts between IgaA and RcsD constitute a poised sensing system, preventing potentially toxic over-activation of this phosphorelay while enabling it to rapidly and quantitatively respond to signals.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Fosfoproteínas/genética , Fosfotransferases/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Complexos Multienzimáticos/genética , Fosforilação/genética , Transporte Proteico/genética , Salmonella typhimurium/genética , Transdução de Sinais/genética
9.
Mol Microbiol ; 105(2): 309-325, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28470798

RESUMO

Small regulatory RNAs have major roles in many regulatory circuits in Escherichia coli and other bacteria, including the transition from planktonic to biofilm growth. We tested Hfq-dependent sRNAs in E. coli for their ability, when overproduced, to inhibit or stimulate biofilm formation, in two different growth media. We identify two mutually exclusive pathways for biofilm formation. In LB, PgaA, encoding an adhesion export protein, played a critical role; biofilm was independent of the general stress factor RpoS or CsgD, regulator of curli and other biofilm genes. The PgaA-dependent pathway was stimulated upon overproduction of DsrA, via negative regulation of H-NS, or of GadY, likely by titration of CsrA. In yeast extract casamino acids (YESCA) media, biofilm was dependent on RpoS and CsgD, but independent of PgaA; RpoS appears to indirectly negatively regulate the PgaA-dependent pathway in YESCA medium. Deletions of most sRNAs had very little effect on biofilm, although deletion of hfq, encoding an RNA chaperone, was defective in both LB and YESCA. Deletion of ArcZ, a small RNA activator of RpoS, decreased biofilm in YESCA; only a portion of this defect could be bypassed by overproduction of RpoS. Overall, sRNAs highlight different pathways to biofilm formation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Fator sigma/genética , Fator sigma/metabolismo , Transativadores/genética , Transativadores/metabolismo
10.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802191

RESUMO

Experimental evolution of Escherichia coli K-12 W3110 by serial dilutions for 2,200 generations at high pH extended the range of sustained growth from pH 9.0 to pH 9.3. pH 9.3-adapted isolates showed mutations in DNA-binding regulators and envelope proteins. One population showed an IS1 knockout of phoB (encoding the positive regulator of the phosphate regulon). A phoB::kanR knockout increased growth at high pH. phoB mutants are known to increase production of fermentation acids, which could enhance fitness at high pH. Mutations in pcnB [poly(A) polymerase] also increased growth at high pH. Three out of four populations showed deletions of torI, an inhibitor of TorR, which activates expression of torCAD (trimethylamine N-oxide respiration) at high pH. All populations showed point mutations affecting the stationary-phase sigma factor RpoS, either in the coding gene or in genes for regulators of RpoS expression. RpoS is required for survival at extremely high pH. In our microplate assay, rpoS deletion slightly decreased growth at pH 9.1. RpoS protein accumulated faster at pH 9 than at pH 7. The RpoS accumulation at high pH required the presence of one or more antiadaptors that block degradation (IraM, IraD, and IraP). Other genes with mutations after high-pH evolution encode regulators, such as those encoded by yobG (mgrB) (PhoPQ regulator), rpoN (nitrogen starvation sigma factor), malI, and purR, as well as envelope proteins, such as those encoded by ompT and yahO Overall, E. coli evolution at high pH selects for mutations in key transcriptional regulators, including phoB and the stationary-phase sigma factor RpoS.IMPORTANCEEscherichia coli in its native habitat encounters high-pH stress such as that of pancreatic secretions. Experimental evolution over 2,000 generations showed selection for mutations in regulatory factors, such as deletion of the phosphate regulator PhoB and mutations that alter the function of the global stress regulator RpoS. RpoS is induced at high pH via multiple mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Meios de Cultura/química , Escherichia coli/genética , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Fator sigma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa