RESUMO
While the loss of sensorimotor and autonomic function often occurs due to multiple trauma and pathologies, spinal cord injury is one of the few traumatic pathologies that severely affects multiple organ systems both upstream and downstream of the injury. Current standard of care therapies primarily maintains health and avoids secondary complications. They do not address the underlying neurological condition. Multiple modalities including spinal neuromodulation have shown promise as potential therapies. The objective of this study was to demonstrate the impact of activity-based neurorehabilitation in presence of epidural spinal stimulation to enable simultaneous global recovery of sensorimotor and autonomic functions in patients with complete motor paralysis due to spinal cord injury. These data are unique in that it quantifies simultaneously changes multiple organ systems within only 2 months of intense activity-based neurorehabilitation when also delivering epidural stimulation consisting of sub-motor threshold stimulation over a period of 12-16 hours/day to enable 'self-training' in 10 patients. Finally, these studies were done in a traditional neurorehabilitation clinical in India using off-the-shelf electrode arrays and pulse generators, thus demonstrating the feasibility of this approach in simultaneously enabling recoveries of multiple physiological organ systems after chronic paralysis and the ability to perform these procedures in a standard, well-controlled clinical environment.
Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Espaço Epidural , Humanos , Paralisia , Modalidades de Fisioterapia , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodosRESUMO
INTRODUCTION: Patients with high cervical Spinal Cord Injury (SCI) usually require mechanical ventilation support. Phrenic Nerve Stimulation (PNS) both direct and indirect is the main alternative for these patients to wean off ventilator although PNS has several limitations and phrenic nerve could be also damaged after cervical spinal cord injury. OBJECTIVE: In this study, we assessed if the spinal cord Epidural Electrical Stimulation (EES) at the segments T2-T5, related to intercostal muscles, can facilitate respiratory function and particularly inspired tidal volume during mechanic ventilation. METHODS: Two patients with a high cervical injury were selected for this study with ethical committee permission and under review board supervision. A phrenic nerve conduction study with diaphragm electromyography (DEMG) was performed before and after trial of EES. RESULTS: Results demonstrate that EES at T2-T5 substantially increase the inspired volume. The results of this study also demonstrate that EES at spinal segments T2-T5 can bring patients dependent from mechanical ventilation to pressure support (on CPAP), preventing Baro-trauma and other complications related to mechanical ventilation. CONCLUSION: These findings suggest that tested approach applied alone or in combination with the phrenic nerve stimulation could help to reduce time on mechanical ventilation and related complications.
Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Diafragma/fisiologia , Humanos , Nervo Frênico/fisiologia , Respiração , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodosRESUMO
INTRODUCTION: Dystonia is a movement disorder substantially affecting the quality of life. Botulinum Neurotoxin (BoNT) is used intramuscularly as a treatment for dystonia; however, not all dystonia patients respond to this treatment. Deep brain stimulation (DBS) is an established treatment for Parkinson's disease (PD) and essential tremor, but it can help in dystonia as well. OBJECTIVES: We studied a total of 67 dystonia patients who were treated with DBS over a period of 7 years to find out the long-term efficacy of DBS in those patients. First, we calculated patient improvement in post-surgery follow-up programs using the Global Dystonia Severity scale (GDS) and Burke-Fahn-Marsden dystonia rating scale (BFMDRS). Secondly, we analyzed the scales scores to see if there was any statistical significance. METHODS: In our study we analyzed patients with ages from 38 to 78 years with dystonia who underwent DBS surgery between January 2014 and December 2020 in four different centers (India, Kuwait, Egypt, and Turkey). The motor response to DBS surgery was retrospectively measured for each patient during every follow-up visit using the GDS and the BFMDRS scales. RESULTS: Five to 7 years post-DBS, the mean reduction in the GDS score was 30 ± 1.0 and for the BFMDRS score 26 ± 1.0. The longitudinal change in scores at 12 and 24 months post-op was also significant with mean reductions in GDS and BFMDRS scores of 68 ± 1.0 and 56 ± 1.0, respectively. The p-values were <0.05 for our post-DBS dystonia patients. CONCLUSIONS: This study illustrates DBS is an established, effective treatment option for patients with different dystonias, such as generalized, cervical, and various brain pathology-induced dystonias. Although symptoms are not completely eliminated, continuous improvements are noticed throughout the post-stimulation time frame.
RESUMO
Histoplasmosis is a fungal disease caused by the dimorphic fungus Histoplasma capsulatum. It is endemic to many parts of the world but is rarely seen in India. The fungus usually affects the immunocompromised patients and is rarely reported in immunocompetent hosts. We hereby report a case of the nodular skin lesion with fever lesion that finally turned out to have cutaneous histoplasmosis, from a non-endemic region of northern India and that too in an immunocompetent.
RESUMO
We report a case of hypothyroidism, obstructive sleep apnea (OSA) with persistent daytime hypoxemia. Cause of hypoxemia was two arteriovenous (AV) malformations in the lower lobe of the lung. We must be alert to other causes of hypoxemia in patients of OSA with persistent daytime hypoxemia.