Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Biol Inorg Chem ; 28(6): 571-581, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37479902

RESUMO

Cyanocobalamin (CNCbl), a medicinal form of vitamin B12, is resistant to glutathione (GSH), and undergoes intracellular processing via reductive decyanation producing the Co(II)-form of Cbl (Cbl(II)) mediated by the CblC-protein. Alteration of the CblC-protein structure might inhibit CNCbl processing. Here, we showed that introducing a bromine atom to the C10-position of the CNCbl corrin ring facilitates its reaction with GSH leading to the formation of Cbl(II) and cyanide dissociation. In a neutral medium, the reaction between C10-Br-CNCbl and GSH proceeds via the complexation of the reactants further leading to dimethylbenzimidazole (DMBI) substitution and electron transfer from GSH to the Co(III)-ion. The reaction is accelerated upon the GSH thiol group deprotonation. The key factors explaining the higher reactivity of C10-Br-CNCbl compared with unmodified CNCbl towards GSH are increasing the electrode potential of CNCbl two-electron reduction upon meso-bromination and the substantial labilization of DMBI, which was shown by comparing their reactions with cyanide and the pKa values of DMBI protonation (pKa base-off). Aquacobalamin (H2OCbl) brominated at the C10-position of the corrin reacts with GSH to give Cbl(II) via GSH complexation and subsequent reaction of this complex with a second GSH molecule, whereas unmodified H2OCbl generates glutathionyl-Cbl, which is resistant to further reduction by GSH.


Assuntos
Halogenação , Vitamina B 12 , Vitamina B 12/química , Cianetos , Glutationa
2.
Ecotoxicol Environ Saf ; 233: 113330, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189517

RESUMO

Environmental chemical (EC) exposures and our interactions with them has significantly increased in the recent decades. Toxicity associated biological characterization of these chemicals is challenging and inefficient, even with available high-throughput technologies. In this report, we describe a novel computational method for characterizing toxicity, associated biological perturbations and disease outcome, called the Chemo-Phenotypic Based Toxicity Measurement (CPTM). CPTM is used to quantify the EC "toxicity score" (Zts), which serves as a holistic metric of potential toxicity and disease outcome. CPTM quantitative toxicity is the measure of chemical features, biological phenotypic effects, and toxicokinetic properties of the ECs. For proof-of-concept, we subject ECs obtained from the Environmental Protection Agency's (EPA) database to the CPTM. We validated the CPTM toxicity predictions by correlating 'Zts' scores with known toxicity effects. We also confirmed the CPTM predictions with in-vitro, and in-vivo experiments. In in-vitro and zebrafish models, we showed that, mixtures of the motor oil and food additive 'Salpn' with endogenous nuclear receptor ligands such as Vitamin D3, dysregulated the nuclear receptors and key transcription pathways involved in Colorectal Cancer. Further, in a human patient derived cell organoid model, we found that a mixture of the widely used pesticides 'Tetramethrin' and 'Fenpropathrin' significantly impacts the population of patient derived pancreatic cancer cells and 3D organoid models to support rapid PDAC disease progression. The CPTM method is, to our knowledge, the first comprehensive toxico-physicochemical, and phenotypic bionetwork-based platform for efficient high-throughput screening of environmental chemical toxicity, mechanisms of action, and connection to disease outcomes.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Praguicidas , Animais , Colecalciferol , Humanos , Praguicidas/toxicidade , Peixe-Zebra
3.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233209

RESUMO

Besides its use in medicine, vitamin B12 (cobalamin) and its derivatives have found in numerous applications as catalysts. However, studies related to the activation of oxidants via cobalamin are scant. In this work, we showed how the addition of aquacobalamin (H2OCbl) accelerates the destruction of azo-dye Orange II by peroxymonosulfate (HSO5-) in aqueous solutions. In neutral and weakly alkaline media, the process is initiated by the modification of the corrin macrocycle with HSO5-, which requires the preliminary deprotonation of the aqua-ligand in H2OCbl to give hydroxocobalamin, producing 5,6-dioxo-5,6-secocobalamin or its isomer (14,15-dioxo-14,15-secocobalamin). In acidic solutions, where the concentration of hydroxocobalamin is negligible, the formation of dioxo-seco-species is not observed, and the reaction between H2OCbl and HSO5- results in slow chromophore bleaching. Using terephthalic acid, we demonstrated the formation of hydroxyl radicals in the mixture of H2OCbl with HSO5-, whereas the generation of sulfate radicals was proved by comparing the effects of ethanol and nitrobenzene on Orange II destruction using the H2OCbl/HSO5- system. The reaction mechanism includes the binding of HSO5- to the Co(III) ion of dioxo-secocobalamin, which results in its deprotonation and the labilization of the O-O bond, leading to the formation of sulfate and hydroxyl radicals which further react with Orange II.


Assuntos
Hidroxocobalamina , Vitamina B 12 , Compostos Azo , Benzenossulfonatos , Etanol , Hidroxocobalamina/farmacologia , Radical Hidroxila , Ligantes , Nitrobenzenos , Oxidantes/química , Oxirredução , Peróxidos/química , Sulfatos/química , Vitamina B 12/análogos & derivados , Vitamina B 12/química , Vitamina B 12/farmacologia , Vitaminas
4.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362163

RESUMO

Perovskite solar cells (PSCs) currently reach high efficiencies, while their insufficient stability remains an obstacle to their technological commercialization. The introduction of hole-transport materials (HTMs) into the device structure is a key approach for enhancing the efficiency and stability of devices. However, currently, the influence of the HTM structure or properties on the characteristics and operational stability of PSCs remains insufficiently studied. Herein, we present four novel push-pull small molecules, H1-4, with alternating thiophene and benzothiadiazole or fluorine-loaded benzothiadiazole units, which contain branched and linear alkyl chains in the different positions of terminal thiophenes to evaluate the impact of HTM structure on PSC performance. It is demonstrated that minor changes in the structure of HTMs significantly influence their behavior in thin films. In particular, H3 organizes into highly ordered lamellar structures in thin films, which proves to be crucial in boosting the efficiency and stability of PSCs. The presented results shed light on the crucial role of the HTM structure and the morphology of films in the performance of PSCs.


Assuntos
Energia Solar , Tiofenos/química , Halogenação
5.
J Biol Inorg Chem ; 26(4): 427-434, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33914169

RESUMO

Hypochlorous acid (HOCl) is a strong oxidant produced by myeloperoxidase. Previous work suggested that HOCl modifies the corrin ring of cobalamins to yield chlorinated species via mechanisms that are incompletely understood. Herein, we report a mechanistic study on the reaction between cyanocobalamin (CNCbl, vitamin B12) and HOCl. Under weakly acidic, neutral and weakly alkaline conditions, the reaction produces the c-lactone derivative of CNCbl chlorinated at the C10-position of corrin ring (C10-Cl-CNCbl-c-lactone). Formation of C10-Cl-CNCbl-c-lactone was not observed at pH ≥ 9.9. The chlorination of CNCbl by HOCl proceeds via two pathways involving one and two HOCl molecules: the reaction is initiated by the very fast formation of a complex between CNCbl and HOCl, which either undergoes slow transformation to chlorinated species, or rapidly reacts with a second HOCl molecule to produce C10-Cl-CNCbl. Subsequent reaction of C10-Cl-CNCbl with HOCl proceeds rapidly toward lactone ring formation by H-atom abstraction at position C8. This work uncovered mechanisms and products of the reaction of a biologically active and therapeutically used cobalamin, CNCbl and the endogenous oxidant HOCl. Binding and reactivity studies of C10-Cl-CNCbl and C10-Cl-CNCbl-c-lactone with relevant proteins of the cobalamin pathway and with cultured cells are necessary to elucidate the potential physiological effects of these species.


Assuntos
Ácido Hipocloroso/química , Vitamina B 12/química , Halogenação , Concentração de Íons de Hidrogênio , Estrutura Molecular
6.
Inorg Chem ; 60(17): 12681-12684, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34382784

RESUMO

Aquacobalamin binds hydrogen peroxide reversibly to form a cobalt(III) hydroperoxo adduct with a 0.25 mM dissociation constant, as evidenced by UV-vis absorption spectroscopy and corroborated by NMR, Raman spectroscopy, stopped-flow UV-vis measurements, and density functional theory calculations.


Assuntos
Peróxido de Hidrogênio/química , Vitamina B 12/análogos & derivados , Cobalto/química , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Modelos Químicos , Espectrofotometria Ultravioleta , Análise Espectral Raman , Vitamina B 12/química
7.
J Biol Inorg Chem ; 25(1): 125-133, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31773269

RESUMO

Reduction of cobalamin by non-dedicated cellular reductases has been reported in earlier work, however, the sources of reducing power and the mechanisms are unknown. This study reports results of kinetic and mechanistic investigation of the reaction between aquacobalamin, H2OCbl, and reduced ß-nicotinamide adenine dinucleotide, NADH. This interaction leads to the formation of one-electron reduced cobalamin, cob(II)alamin, and proceeds via water substitution on aquacobalamin by NADH and further decomposition of NADH-Co(III) complex to cob(II)alamin and NADH·+. Riboflavin catalyzes the reduction of aquacobalamin by NADH both in free form and with aquacobalamin bound to the cobalamin processing enzyme CblC. The rate-determining step of this catalytic reaction is the interaction between riboflavin and NADH to produce a charge transfer complex that reacts with aquacobalamin. Aquacobalamin quenches the fluorescence of NADH and riboflavin predominantly via a static mechanism.


Assuntos
NAD/metabolismo , Riboflavina/farmacologia , Vitamina B 12/análogos & derivados , Catálise , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Humanos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Análise Espectral , Vitamina B 12/metabolismo
8.
Environ Sci Technol ; 54(19): 12142-12153, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32901485

RESUMO

Environmental pollution is a threat to humans and wildlife species. Of particular concern are endocrine disrupting chemicals (EDCs). An important target of EDCs is nuclear receptors (NRs) that control endocrine and metabolic responses through transcriptional regulation. Owing in part to structural differences of NRs, adverse effects of EDCs vary significantly among species. Here, we describe a multiplexed reporter assay (the Ecotox FACTORIAL) enabling parallel assessment of compounds' effects on estrogen, androgen, thyroid, and PPARγ receptors of representative mammals, birds, reptiles, amphibians, and fish. The Ecotox FACTORIAL is a single-well assay comprising a set of species-specific, one-hybrid GAL4-NR reporter constructs transiently transfected into test cells. To harmonize cross-species assessments, we used a combination of two approaches. First, we used the same type of test cells for all reporters; second, we implemented a parallel detection of reporter RNAs. The assay demonstrated excellent quality, reproducibility, and insignificant intra-assay variability. Importantly, the EC50 values for NR ligands were consistent with those reported for conventional assays. Using the assay allowed ranking the hazard potential of environmental pollutants (e.g., bisphenols, polycyclic aromatic hydrocarbons, and synthetic progestins) across species. Furthermore, the assay permitted detecting taxa-specific effects of surface water samples. Therefore, the Ecotox FACTORIAL enables harmonized assessment of the endocrine and metabolic disrupting activity of chemicals and surface water in humans as well as in wildlife species.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Animais , Bioensaio , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Poluentes Ambientais/farmacologia , Humanos , Reprodutibilidade dos Testes
9.
Environ Sci Technol ; 53(2): 973-983, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548063

RESUMO

While chemical analysis of contaminant mixtures remains an essential component of environmental monitoring, bioactivity-based assessments using in vitro systems increasingly are used in the detection of biological effects. Historically, in vitro assessments focused on a few biological pathways, for example, aryl hydrocarbon receptor (AhR) or estrogen receptor (ER) activities. High-throughput screening (HTS) technologies have greatly increased the number of biological targets and processes that can be rapidly assessed. Here we screened extracts of surface waters from a nationwide survey of United States streams for bioactivities associated with 69 different end points using two multiplexed HTS assays. Bioactivity of extracts from 38 streams was evaluated and compared with concentrations of over 700 analytes to identify chemicals contributing to observed effects. Eleven primary biological end points were detected. Pregnane X receptor (PXR) and AhR-mediated activities were the most commonly detected. Measured chemicals did not completely account for AhR and PXR responses. Surface waters with AhR and PXR effects were associated with low intensity, developed land cover. Likewise, elevated bioactivities frequently associated with wastewater discharges included endocrine-related end points ER and glucocorticoid receptor. These results underscore the value of bioassay-based monitoring of environmental mixtures for detecting biological effects that could not be ascertained solely through chemical analyses.


Assuntos
Rios , Poluentes Químicos da Água , Misturas Complexas , Monitoramento Ambiental , Inquéritos e Questionários , Estados Unidos
10.
Molecules ; 24(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366103

RESUMO

Oxidation of sulfide to sulfate is known to consist of several steps. Key intermediates in this process are the so-called small oxoacids of sulfur (SOS)-sulfenic HSOH (hydrogen thioperoxide, oxadisulfane, or sulfur hydride hydroxide) and sulfoxylic S(OH)2 acids. Sulfur monoxide can be considered as a dehydrated form of sulfoxylic acid. Although all of these species play an important role in atmospheric chemistry and in organic synthesis, and are also invoked in biochemical processes, they are quite unstable compounds so much so that their physical and chemical properties are still subject to intense studies. It is well-established that sulfoxylic acid has very strong reducing properties, while sulfenic acid is capable of both oxidizing and reducing various substrates. Here, in this review, the mechanisms of sulfide oxidation as well as data on the structure and reactivity of small sulfur-containing oxoacids, sulfur monoxide, and its precursors are discussed.


Assuntos
Safrol/análogos & derivados , Ácidos Sulfênicos/química , Sulfetos/química , Radicais Livres , Sulfeto de Hidrogênio/química , Cinética , Oxirredução , Óxidos/química , Peróxidos/química , Safrol/química , Sulfatos/química , Compostos de Enxofre/química
11.
J Biol Inorg Chem ; 23(5): 725-738, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29721769

RESUMO

Serum albumin binds to a variety of endogenous ligands and drugs. Human serum albumin (HSA) binds to heme via hydrophobic interactions and axial coordination of the iron center by protein residue Tyr161. Human serum albumin binds to another tetrapyrrole, cobalamin (Cbl), but the structural and functional properties of this complex are poorly understood. Herein, we investigate the reaction between aquacobalamin (H2OCbl) and bovine serum albumin (BSA, the bovine counterpart of HSA) using Ultraviolet-Visible and fluorescent spectroscopy, and electron paramagnetic resonance. The reaction between H2OCbl and BSA led to the formation of a BSA-Cbl(III) complex consistent with N-axial ligation (amino). Prior to the formation of this complex, the reactants participate in an additional binding event that has been examined by fluorescence spectroscopy. Binding of BSA to Cbl(III) reduced complex formation between the bound cobalamin and free cyanide to form cyanocobalamin (CNCbl), suggesting that the ß-axial position of the cobalamin may be occupied by an amino acid residue from the protein. Reaction of BSA containing reduced disulfide bonds with H2OCbl produces cob(II)alamin and disulfide with intermediate formation of thiolate Cbl(III)-BSA complex and its decomposition. Finally, in vitro studies showed that cobalamin binds to BSA only in the presence of an excess of protein, which is in contrast to heme binding to BSA that involves a 1:1 stoichiometry. In vitro formation of BSA-Cbl(III) complex does not preclude subsequent heme binding, which occurs without displacement of H2OCbl bound to BSA. These data suggest that the two tetrapyrroles interact with BSA in different binding pockets.


Assuntos
Soroalbumina Bovina/química , Tetrapirróis/metabolismo , Vitamina B 12/análogos & derivados , Alquilação , Cianetos/química , Espectroscopia de Ressonância de Spin Eletrônica , Heme/metabolismo , Histidina/química , Concentração de Íons de Hidrogênio , Cinética , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Vitamina B 12/química , Vitamina B 12/metabolismo
12.
J Biol Inorg Chem ; 22(4): 453-459, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27864634

RESUMO

Reactions of aquacobalamin (H2O-Cbl(III)) and its one-electron reduced form (cob(II)alamin, Cbl(II)) with chlorite (ClO2-) and chlorine dioxide (ClO 2• ) were studied by conventional and stopped-flow UV-Vis spectroscopies and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ClO2- does not react with H2O-Cbl(III), but oxidizes Cbl(II) to H2O-Cbl(III) as a major product and corrin-modified species as minor products. The proposed mechanism of chlorite reduction involves formation of OCl- that modifies the corrin ring during the course of reaction with Cbl(II). H2O-Cbl(III) undergoes relatively slow destruction by ClO 2• via transient formation of oxygenated species, whereas reaction between Cbl(II) and ClO 2• proceeds extremely rapidly and leads to the oxidation of the Co(II)-center.


Assuntos
Cloretos/química , Compostos Clorados/química , Óxidos/química , Vitamina B 12/análogos & derivados , Concentração de Íons de Hidrogênio , Conformação Molecular , Vitamina B 12/química
13.
J Biol Inorg Chem ; 22(6): 969-975, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28620693

RESUMO

The kinetics of reactions of cobalamin (II) and cobinamide (II) with sulfur dioxide was studied by UV-visible (UV-vis) spectroscopy. Reaction results in oxidation of Co(II) center and involves two aquated SO2 moieties. The final product is suggested to be complex Co(III)-S2O 4•- . The absence of corrin ring modifications during the reactions was proved.


Assuntos
Cobamidas/química , Dióxido de Enxofre/química , Vitamina B 12/química , Cinética
14.
Inorg Chem ; 56(8): 4680-4688, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28338317

RESUMO

The thiourea dioxide (TDO)-iodine reaction was investigated spectrophotometrically monitoring the consumption of total amount of iodine at 468 nm, at T = 25.0 ± 0.1 °C, and at 0.5 M ionic strength in buffered slightly acidic medium. The nitrogen- and carbon-containing products were found to be ammonium ion and dissolved carbon dioxide, respectively, while from sulfur part sulfate ion was exclusively detected, when fresh TDO solution was used. The stoichiometry of the reaction was established as 2I2 + TDO + 4H2O → SO42- + 2NH4+ + 4I- + CO2 + 4H+ indicating a strict 2:1 stoichiometric ratio. However, using aged TDO solution this stoichiometric ratio is shifted to lower values suggesting the formation of elementary sulfur augmented by the 2TDO + I2 + 4H2O → S + SO42- + 4NH4+ + 2I- + 2CO2 hypothetical limiting stoichiometry. We also confirmed experimentally that in aqueous solution TDO slowly rearranges into an unindentified species. This species then produces elementary sulfur at a later stage of the aging process via subsequent reactions accounting for a loss of reducing power. The direct reaction between TDO and iodine was found to be relatively rapid and completed within seconds in absence of initially added iodide ion. Formation of the latter ion, however, strongly inhibits the oxidation process; hence, the system is autoinhibitory with respect to iodide ion. Furthermore, increase of pH markedly accelerates the reaction as well. These observations suggest that a short-lived steady-state intermediate (iodinated TDO) is produced in a rapid pre-equilibrium, where iodide and hydrogen ions are also involved. A nine-step kinetic model, to be able to describe the most important characteristics of the experimental curves with four fitted parameters, is proposed and discussed.

15.
Biometals ; 30(5): 757-764, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28836023

RESUMO

Glutathionylcobalamin (GSCbl), a tight complex of glutathione (GSH) with cobalamin(III), is readily oxidized to aquacobalamin by hypochlorite. Corrin macrocycle remains unmodified in the presence of threefold excess of hypochlorite, whereas aqua- and cyanocobalamins are partially transformed to chlorinated species under the same conditions. The suggested mechanism of reaction between GSCbl and hypochlorite involves subsequent oxidation of thiol and amino groups and dissociation of oxidized glutathione from Co(III)-ion.


Assuntos
Glutationa/análogos & derivados , Glutationa/química , Ácido Hipocloroso/química , Vitamina B 12/análogos & derivados , Vitamina B 12/química , Corrinoides , Cinética , Ligantes , Estrutura Molecular , Oxirredução
16.
Nucleic Acids Res ; 42(8): 4882-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24550163

RESUMO

Fully phosphorothioate antisense oligonucleotides (ASOs) with locked nucleic acids (LNAs) improve target affinity, RNase H activation and stability. LNA modified ASOs can cause hepatotoxicity, and this risk is currently not fully understood. In vitro cytotoxicity screens have not been reliable predictors of hepatic toxicity in non-clinical testing; however, mice are considered to be a sensitive test species. To better understand the relationship between nucleotide sequence and hepatotoxicity, a structure-toxicity analysis was performed using results from 2 week repeated-dose-tolerability studies in mice administered LNA-modified ASOs. ASOs targeting human Apolipoprotien C3 (Apoc3), CREB (cAMP Response Element Binding Protein) Regulated Transcription Coactivator 2 (Crtc2) or Glucocorticoid Receptor (GR, NR3C1) were classified based upon the presence or absence of hepatotoxicity in mice. From these data, a random-decision forest-classification model generated from nucleotide sequence descriptors identified two trinucleotide motifs (TCC and TGC) that were present only in hepatotoxic sequences. We found that motif containing sequences were more likely to bind to hepatocellular proteins in vitro and increased P53 and NRF2 stress pathway activity in vivo. These results suggest in silico approaches can be utilized to establish structure-toxicity relationships of LNA-modified ASOs and decrease the likelihood of hepatotoxicity in preclinical testing.


Assuntos
Oligonucleotídeos Antissenso/toxicidade , Oligonucleotídeos/toxicidade , Animais , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Motivos de Nucleotídeos , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , Proteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(20): E1857-66, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630282

RESUMO

Vertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative. This identified the liver and gastrointestinal tract as primary CBLB502 target organs. In particular, liver hepatocytes were the main cell type directly and specifically responding to systemic administration of CBLB502 but not to that of the TLR4 agonist LPS. To assess CBLB502 impact on other pathways, we created multireporter mice with hepatocytes transduced in vivo with reporters for 46 inducible transcription factor families and found that along with NF-κB, CBLB502 strongly activated STAT3-, phenobarbital-responsive enhancer module (PREM), and activator protein 1 (AP-1-) -driven pathways. Livers of CBLB502-treated mice displayed induction of numerous immunomodulatory factors and massive recruitment of various types of immune cells. This led to inhibition of growth of liver metastases of multiple tumors regardless of their TLR5 status. The changed liver microenvironment was not, however, hepatotoxic, because CBLB502 induced resistance to Fas-mediated apoptosis in normal liver cells. Temporary occlusion of liver blood circulation prevented CBLB502 from protecting hematopoietic progenitors in lethally irradiated mice, indicating involvement of a factor secreted by responding liver cells. These results define the liver as the key mediator of TLR5-dependent effects in vivo and suggest clinical applications for TLR5 agonists as hepatoprotective and antimetastatic agents.


Assuntos
Fígado/metabolismo , Peptídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Receptor 5 Toll-Like/agonistas , Animais , Anticarcinógenos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Feminino , Citometria de Fluxo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transplante de Neoplasias , Neutrófilos/metabolismo , Protetores contra Radiação/farmacologia , Transdução de Sinais , Receptor fas/metabolismo
18.
Chemistry ; 20(44): 14164-76, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25265917

RESUMO

Thiourea dioxide is one of the best known, important, and stable products of thiourea oxidation. This compound has long been considered as an effective reducing agent for many years. Traditional areas of its application include the textile and paper industries. In recent years, however, thiourea dioxides and trioxides have been widely used in new fields including organocatalytic, polymerization, and phase-transfer reactions; reduction of graphene and graphite oxides; bitumen modifications; synthesis of guanidines and their derivatives; and studying nonlinear dynamical phenomena in chemical kinetics. The review gives a detailed survey of the latest developments and main trends in the chemistry and application of thiourea mon-, di-, and trioxides.

19.
Nitric Oxide ; 40: 100-9, 2014 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-24997418

RESUMO

EPR, optical, electrochemical and stopped-flow methods were used to demonstrate that Fe(NO)2 fragments in paramagnetic mononuclear and diamagnetic binuclear forms of dinitrosyl iron complexes with glutathione are reversibly reduced by a two-electron mechanism to be further transformed from the initial state with d(7) configuration into states with the d(8) and d(9) electronic configurations of the iron atom. Under these conditions, both forms of DNIC display identical optical and EPR characteristics in state d(9) suggesting that reduction of the binuclear form of DNIC initiates their reversible decomposition into two mononuclear dinitrosyl iron fragments, one of which is EPR-silent (d(8)) and the other one is EPR-active (d(9)). Both forms of DNIC produce EPR signals with the following values of the g-factor: g⊥=2.01, g||=1.97, gaver.=2.0. M-DNIC with glutathione manifest an ability to pass into state d(9), however, only in solutions with a low content of free glutathione. Similar transitions were established for protein-bound М- and B-DNIC with thiol-containing ligands.


Assuntos
Glutationa/química , Ferro/química , Óxidos de Nitrogênio/química , Compostos de Sulfidrila/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Peso Molecular , Oxirredução
20.
Environ Sci Technol ; 48(3): 1940-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24369993

RESUMO

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.


Assuntos
Bioensaio , Água Potável/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Animais , Austrália , Benchmarking , Carvão Vegetal/análise , Água Potável/normas , Estrogênios/análise , Filtração , Técnicas In Vitro , Reciclagem , Testes de Toxicidade , Água/análise , Purificação da Água , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa