Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Cell ; 168(5): 946-946.e1, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28235204

RESUMO

Class 1 CRISPR-Cas systems are characterized by effector modules consisting of multiple subunits. Class 1 systems comprise about 90% of all CRISPR-Cas loci identified in bacteria and archaea and can target both DNA and RNA.


Assuntos
Sistemas CRISPR-Cas , Células Procarióticas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Evolução Molecular , Células Procarióticas/classificação
2.
Cell ; 168(1-2): 328-328.e1, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086097

RESUMO

Class 2 CRISPR-Cas systems are characterized by effector modules consisting of single, large, multidomain proteins that appear to have been derived from mobile genetic elements. Some Class 2 effector proteins, such as Cas9 and Cas12a (Cpf1), have been successfully repurposed for genome engineering.


Assuntos
Bactérias/imunologia , Sistemas CRISPR-Cas , Bactérias/classificação , Bactérias/genética , Endonucleases/química , Endonucleases/genética , Edição de Genes
3.
Cell ; 165(4): 949-62, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27114038

RESUMO

Cpf1 is an RNA-guided endonuclease of a type V CRISPR-Cas system that has been recently harnessed for genome editing. Here, we report the crystal structure of Acidaminococcus sp. Cpf1 (AsCpf1) in complex with the guide RNA and its target DNA at 2.8 Å resolution. AsCpf1 adopts a bilobed architecture, with the RNA-DNA heteroduplex bound inside the central channel. The structural comparison of AsCpf1 with Cas9, a type II CRISPR-Cas nuclease, reveals both striking similarity and major differences, thereby explaining their distinct functionalities. AsCpf1 contains the RuvC domain and a putative novel nuclease domain, which are responsible for cleaving the non-target and target strands, respectively, and for jointly generating staggered DNA double-strand breaks. AsCpf1 recognizes the 5'-TTTN-3' protospacer adjacent motif by base and shape readout mechanisms. Our findings provide mechanistic insights into RNA-guided DNA cleavage by Cpf1 and establish a framework for rational engineering of the CRISPR-Cpf1 toolbox.


Assuntos
Acidaminococcus/química , Proteínas de Bactérias/química , DNA/química , Técnicas Genéticas , RNA Guia de Cinetoplastídeos/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Modelos Moleculares , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo
4.
Mol Cell ; 83(12): 2122-2136.e10, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267947

RESUMO

To spread, transposons must integrate into target sites without disruption of essential genes while avoiding host defense systems. Tn7-like transposons employ multiple mechanisms for target-site selection, including protein-guided targeting and, in CRISPR-associated transposons (CASTs), RNA-guided targeting. Combining phylogenomic and structural analyses, we conducted a broad survey of target selectors, revealing diverse mechanisms used by Tn7 to recognize target sites, including previously uncharacterized target-selector proteins found in newly discovered transposable elements (TEs). We experimentally characterized a CAST I-D system and a Tn6022-like transposon that uses TnsF, which contains an inactivated tyrosine recombinase domain, to target the comM gene. Additionally, we identified a non-Tn7 transposon, Tsy, encoding a homolog of TnsF with an active tyrosine recombinase domain, which we show also inserts into comM. Our findings show that Tn7 transposons employ modular architecture and co-opt target selectors from various sources to optimize target selection and drive transposon spread.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos de DNA Transponíveis , Plasmídeos , Elementos de DNA Transponíveis/genética , Recombinases/genética , Tirosina/genética
5.
Cell ; 163(3): 759-71, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26422227

RESUMO

The microbial adaptive immune system CRISPR mediates defense against foreign genetic elements through two classes of RNA-guided nuclease effectors. Class 1 effectors utilize multi-protein complexes, whereas class 2 effectors rely on single-component effector proteins such as the well-characterized Cas9. Here, we report characterization of Cpf1, a putative class 2 CRISPR effector. We demonstrate that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif. Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, we identified two candidate enzymes from Acidaminococcus and Lachnospiraceae, with efficient genome-editing activity in human cells. Identifying this mechanism of interference broadens our understanding of CRISPR-Cas systems and advances their genome editing applications.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/genética , Francisella/genética , Engenharia Genética/métodos , Sequência de Aminoácidos , Endonucleases/química , Francisella/enzimologia , Células HEK293 , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética , Alinhamento de Sequência
6.
Mol Cell ; 82(23): 4487-4502.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427491

RESUMO

CRISPR-Cas are prokaryotic adaptive immune systems. Cas nucleases generally use CRISPR-derived RNA guides to specifically bind and cleave DNA or RNA targets. Here, we describe the experimental characterization of a bacterial CRISPR effector protein Cas12m representing subtype V-M. Despite being less than half the size of Cas12a, Cas12m catalyzes auto-processing of a crRNA guide, recognizes a 5'-TTN' protospacer-adjacent motif (PAM), and stably binds a guide-complementary double-stranded DNA (dsDNA). Cas12m has a RuvC domain with a non-canonical catalytic site and accordingly is incapable of guide-dependent cleavage of target nucleic acids. Despite lacking target cleavage activity, the high binding affinity of Cas12m to dsDNA targets allows for interference as demonstrated by its ability to protect bacteria against invading plasmids through silencing invader transcription and/or replication. Based on these molecular features, we repurposed Cas12m by fusing it to a cytidine deaminase that resulted in base editing within a distinct window.


Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/genética , Plasmídeos , RNA , RNA Guia de Cinetoplastídeos/metabolismo
7.
Nature ; 610(7932): 575-581, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224386

RESUMO

RNA-guided systems, such as CRISPR-Cas, combine programmable substrate recognition with enzymatic function, a combination that has been used advantageously to develop powerful molecular technologies1,2. Structural studies of these systems have illuminated how the RNA and protein jointly recognize and cleave their substrates, guiding rational engineering for further technology development3. Recent work identified a new class of RNA-guided systems, termed OMEGA, which include IscB, the likely ancestor of Cas9, and the nickase IsrB, a homologue of IscB lacking the HNH nuclease domain4. IsrB consists of only around 350 amino acids, but its small size is counterbalanced by a relatively large RNA guide (roughly 300-nt ωRNA). Here, we report the cryogenic-electron microscopy structure of Desulfovirgula thermocuniculi IsrB (DtIsrB) in complex with its cognate ωRNA and a target DNA. We find the overall structure of the IsrB protein shares a common scaffold with Cas9. In contrast to Cas9, however, which uses a recognition (REC) lobe to facilitate target selection, IsrB relies on its ωRNA, part of which forms an intricate ternary structure positioned analogously to REC. Structural analyses of IsrB and its ωRNA as well as comparisons to other RNA-guided systems highlight the functional interplay between protein and RNA, advancing our understanding of the biology and evolution of these diverse systems.


Assuntos
DNA , Desoxirribonuclease I , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/ultraestrutura , DNA/química , DNA/metabolismo , DNA/ultraestrutura , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , RNA Guia de Cinetoplastídeos/ultraestrutura , Microscopia Crioeletrônica , Proteínas Associadas a CRISPR/química
8.
Nature ; 597(7878): 720-725, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489594

RESUMO

CRISPR-Cas interference is mediated by Cas effector nucleases that are either components of multisubunit complexes-in class 1 CRISPR-Cas systems-or domains of a single protein-in class 2 systems1-3. Here we show that the subtype III-E effector Cas7-11 is a single-protein effector in the class 1 CRISPR-Cas systems originating from the fusion of a putative Cas11 domain and multiple Cas7 subunits that are derived from subtype III-D. Cas7-11 from Desulfonema ishimotonii (DiCas7-11), when expressed in Escherichia coli, has substantial RNA interference effectivity against mRNAs and bacteriophages. Similar to many class 2 effectors-and unique among class 1 systems-DiCas7-11 processes pre-CRISPR RNA into mature CRISPR RNA (crRNA) and cleaves RNA at positions defined by the target:spacer duplex, without detectable non-specific activity. We engineered Cas7-11 for RNA knockdown and editing in mammalian cells. We show that Cas7-11 has no effects on cell viability, whereas other RNA-targeting tools (such as short hairpin RNAs and Cas13) show substantial cell toxicity4,5. This study illustrates the evolution of a single-protein effector from multisubunit class 1 effector complexes, expanding our understanding of the diversity of CRISPR systems. Cas7-11 provides the basis for new programmable RNA-targeting tools that are free of collateral activity and cell toxicity.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes , RNA/genética , Biologia Computacional , Deltaproteobacteria/genética , Escherichia coli , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Interferência de RNA
9.
Nature ; 593(7860): 553-557, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33911286

RESUMO

Asgard is a recently discovered superphylum of archaea that appears to include the closest archaeal relatives of eukaryotes1-5. Debate continues as to whether the archaeal ancestor of eukaryotes belongs within the Asgard superphylum or whether this ancestor is a sister group to all other archaea (that is, a two-domain versus a three-domain tree of life)6-8. Here we present a comparative analysis of 162 complete or nearly complete genomes of Asgard archaea, including 75 metagenome-assembled genomes that-to our knowledge-have not previously been reported. Our results substantially expand the phylogenetic diversity of Asgard and lead us to propose six additional phyla that include a deep branch that we have provisionally named Wukongarchaeota. Our phylogenomic analysis does not resolve unequivocally the evolutionary relationship between eukaryotes and Asgard archaea, but instead-depending on the choice of species and conserved genes used to build the phylogeny-supports either the origin of eukaryotes from within Asgard (as a sister group to the expanded Heimdallarchaeota-Wukongarchaeota branch) or a deeper branch for the eukaryote ancestor within archaea. Our comprehensive protein domain analysis using the 162 Asgard genomes results in a major expansion of the set of eukaryotic signature proteins. The Asgard eukaryotic signature proteins show variable phyletic distributions and domain architectures, which is suggestive of dynamic evolution through horizontal gene transfer, gene loss, gene duplication and domain shuffling. The phylogenomics of the Asgard archaea points to the accumulation of the components of the mobile archaeal 'eukaryome' in the archaeal ancestor of eukaryotes (within or outside Asgard) through extensive horizontal gene transfer.


Assuntos
Archaea/classificação , Genoma Arqueal , Filogenia , Evolução Biológica , Eucariotos , Metagenômica
10.
Nature ; 589(7841): 306-309, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208949

RESUMO

CrAss-like phages are a recently described expansive group of viruses that includes the most abundant virus in the human gut1-3. The genomes of all crAss-like phages encode a large virion-packaged protein2,4 that contains a DFDxD sequence motif, which forms the catalytic site in cellular multisubunit RNA polymerases (RNAPs)5. Here, using Cellulophaga baltica crAss-like phage phi14:2 as a model system, we show that this protein is a DNA-dependent RNAP that is translocated into the host cell along with the phage DNA and transcribes early phage genes. We determined the crystal structure of this 2,180-residue enzyme in a self-inhibited state, which probably occurs before virion packaging. This conformation is attained with the help of a cleft-blocking domain that interacts with the active site and occupies the cavity in which the RNA-DNA hybrid binds. Structurally, phi14:2 RNAP is most similar to eukaryotic RNAPs that are involved in RNA interference6,7, although most of the phi14:2 RNAP structure (nearly 1,600 residues) maps to a new region of the protein fold space. Considering this structural similarity, we propose that eukaryal RNA interference polymerases have their origins in phage, which parallels the emergence of the mitochondrial transcription apparatus8.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/enzimologia , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Flavobacteriaceae/virologia , Bacteriófagos/genética , Domínio Catalítico , Sistema Livre de Células , Cristalografia por Raios X , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/genética , RNA Polimerases Dirigidas por DNA/genética , Evolução Molecular , Regulação Viral da Expressão Gênica , Genes Virais/genética , Modelos Biológicos , Modelos Moleculares , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Interferência de RNA , Transcrição Gênica
11.
Nat Rev Genet ; 21(2): 119-131, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31611667

RESUMO

All cellular life forms are afflicted by diverse genetic parasites, including viruses and other types of mobile genetic elements (MGEs), and have evolved multiple, diverse defence systems that protect them from MGE assault via different mechanisms. Here, we provide our perspectives on how recent evidence points to tight evolutionary connections between MGEs and defence systems that reach far beyond the proverbial arms race. Defence systems incur a fitness cost for the hosts; therefore, at least in prokaryotes, horizontal mobility of defence systems, mediated primarily by MGEs, is essential for their persistence. Moreover, defence systems themselves possess certain features of selfish elements. Common components of MGEs, such as site-specific nucleases, are 'guns for hire' that can also function as parts of defence mechanisms and are often shuttled between MGEs and defence systems. Thus, evolutionary and molecular factors converge to mould the multifaceted, inextricable connection between MGEs and anti-MGE defence systems.


Assuntos
Evolução Molecular , Sequências Repetitivas Dispersas , Evolução Biológica , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno
12.
Mol Cell ; 70(2): 327-339.e5, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29551514

RESUMO

Bacterial class 2 CRISPR-Cas systems utilize a single RNA-guided protein effector to mitigate viral infection. We aggregated genomic data from multiple sources and constructed an expanded database of predicted class 2 CRISPR-Cas systems. A search for novel RNA-targeting systems identified subtype VI-D, encoding dual HEPN domain-containing Cas13d effectors and putative WYL-domain-containing accessory proteins (WYL1 and WYL-b1 through WYL-b5). The median size of Cas13d proteins is 190 to 300 aa smaller than that of Cas13a-Cas13c. Despite their small size, Cas13d orthologs from Eubacterium siraeum (Es) and Ruminococcus sp. (Rsp) are active in both CRISPR RNA processing and targeting, as well as collateral RNA cleavage, with no target-flanking sequence requirements. The RspWYL1 protein stimulates RNA cleavage by both EsCas13d and RspCas13d, demonstrating a common regulatory mechanism for divergent Cas13d orthologs. The small size, minimal targeting constraints, and modular regulation of Cas13d effectors further expands the CRISPR toolkit for RNA manipulation and detection.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , RNA Bacteriano/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Bases de Dados Genéticas , Escherichia coli/enzimologia , Escherichia coli/genética , Eubacterium/enzimologia , Eubacterium/genética , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Domínios Proteicos , Estrutura Secundária de Proteína , Processamento Pós-Transcricional do RNA , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ruminococcus/enzimologia , Ruminococcus/genética , Relação Estrutura-Atividade
13.
Mol Cell ; 72(4): 700-714.e8, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30344094

RESUMO

Prokaryotic CRISPR-Cas systems provide adaptive immunity by integrating portions of foreign nucleic acids (spacers) into genomic CRISPR arrays. Cas6 proteins then process CRISPR array transcripts into spacer-derived RNAs (CRISPR RNAs; crRNAs) that target Cas nucleases to matching invaders. We find that a Marinomonas mediterranea fusion protein combines three enzymatic domains (Cas6, reverse transcriptase [RT], and Cas1), which function in both crRNA biogenesis and spacer acquisition from RNA and DNA. We report a crystal structure of this divergent Cas6, identify amino acids required for Cas6 activity, show that the Cas6 domain is required for RT activity and RNA spacer acquisition, and demonstrate that CRISPR-repeat binding to Cas6 regulates RT activity. Co-evolution of putative interacting surfaces suggests a specific structural interaction between the Cas6 and RT domains, and phylogenetic analysis reveals repeated, stable association of free-standing Cas6s with CRISPR RTs in multiple microbial lineages, indicating that a functional interaction between these proteins preceded evolution of the fusion.


Assuntos
Proteínas Associadas a CRISPR/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , DNA Polimerase Dirigida por RNA/fisiologia , Sequência de Bases/genética , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA , Endonucleases , Marinomonas/genética , Marinomonas/metabolismo , Filogenia , RNA/biossíntese , Especificidade por Substrato
14.
Proc Natl Acad Sci U S A ; 120(16): e2300154120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036997

RESUMO

The evolution of genomes in all life forms involves two distinct, dynamic types of genomic changes: gene duplication (and loss) that shape families of paralogous genes and extension (and contraction) of low-complexity regions (LCR), which occurs through dynamics of short repeats in protein-coding genes. Although the roles of each of these types of events in genome evolution have been studied, their co-evolutionary dynamics is not thoroughly understood. Here, by analyzing a wide range of genomes from diverse bacteria and archaea, we show that LCR and paralogy represent two distinct routes of evolution that are inversely correlated. The emergence of LCR is a prominent evolutionary mechanism in fast evolving, young protein families, whereas paralogy dominates the comparatively slow evolution of old protein families. The analysis of multiple prokaryotic genomes shows that the formation of LCR is likely a widespread, transient evolutionary mechanism that temporally and locally affects also ancestral functions, but apparently, fades away with time, under mutational and selective pressures, yielding to gene paralogy. We propose that compensatory relationships between short-term and longer-term evolutionary mechanisms are universal in the evolution of life.


Assuntos
Evolução Molecular , Células Procarióticas , Filogenia , Bactérias/genética , Archaea/genética
15.
Proc Natl Acad Sci U S A ; 120(48): e2308224120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983496

RESUMO

The TnpB proteins are transposon-associated RNA-guided nucleases that are among the most abundant proteins encoded in bacterial and archaeal genomes, but whose functions in the transposon life cycle remain unknown. TnpB appears to be the evolutionary ancestor of Cas12, the effector nuclease of type V CRISPR-Cas systems. We performed a comprehensive census of TnpBs in archaeal and bacterial genomes and constructed a phylogenetic tree on which we mapped various features of these proteins. In multiple branches of the tree, the catalytic site of the TnpB nuclease is rearranged, demonstrating structural and probably biochemical malleability of this enzyme. We identified numerous cases of apparent recruitment of TnpB for other functions of which the most common is the evolution of type V CRISPR-Cas effectors on about 50 independent occasions. In many other cases of more radical exaptation, the catalytic site of the TnpB nuclease is apparently inactivated, suggesting a regulatory function, whereas in others, the activity appears to be retained, indicating that the recruited TnpB functions as a nuclease, for example, as a toxin. These findings demonstrate remarkable evolutionary malleability of the TnpB scaffold and provide extensive opportunities for further exploration of RNA-guided biological systems as well as multiple applications.


Assuntos
Bactérias , Ribonucleases , Ribonucleases/metabolismo , Filogenia , Bactérias/metabolismo , Archaea/metabolismo , Endonucleases/metabolismo , Sistemas CRISPR-Cas , RNA
16.
PLoS Biol ; 20(1): e3001481, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986140

RESUMO

The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided adaptive immunity against viruses and other mobile genetic elements (MGEs). These systems show remarkable evolutionary plasticity and functional versatility at multiple levels, including both the defense mechanisms that lead to direct, specific elimination of the target DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy. This flexibility is also evident in the recruitment of CRISPR systems for nondefense functions. Defective CRISPR systems or individual CRISPR components have been recruited by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived CRISPR variants of yet unknown functions have been discovered. A major route of innovation in CRISPR evolution is the repurposing of diverged repeat variants encoded outside CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity and functional versatility of CRISPR systems are striking manifestations of the ubiquitous interplay between defense and "normal" cellular functions.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Molecular , Imunidade Adaptativa , Archaea/imunologia , Bactérias/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Plasmídeos , Fenômenos Fisiológicos Virais , Vírus
17.
Mol Cell ; 65(4): 618-630.e7, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28065598

RESUMO

CRISPR-Cas adaptive immune systems defend microbes against foreign nucleic acids via RNA-guided endonucleases. Using a computational sequence database mining approach, we identify two class 2 CRISPR-Cas systems (subtype VI-B) that lack Cas1 and Cas2 and encompass a single large effector protein, Cas13b, along with one of two previously uncharacterized associated proteins, Csx27 and Csx28. We establish that these CRISPR-Cas systems can achieve RNA interference when heterologously expressed. Through a combination of biochemical and genetic experiments, we show that Cas13b processes its own CRISPR array with short and long direct repeats, cleaves target RNA, and exhibits collateral RNase activity. Using an E. coli essential gene screen, we demonstrate that Cas13b has a double-sided protospacer-flanking sequence and elucidate RNA secondary structure requirements for targeting. We also find that Csx27 represses, whereas Csx28 enhances, Cas13b-mediated RNA interference. Characterization of these CRISPR systems creates opportunities to develop tools to manipulate and monitor cellular transcripts.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/enzimologia , Edição de Genes/métodos , Interferência de RNA , RNA Bacteriano/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleases/metabolismo , Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Biologia Computacional , Mineração de Dados , Bases de Dados Genéticas , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Guia de Cinetoplastídeos/genética , Ribonucleases/genética
18.
Nucleic Acids Res ; 51(15): 8150-8168, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37283088

RESUMO

CRISPR-cas loci typically contain CRISPR arrays with unique spacers separating direct repeats. Spacers along with portions of adjacent repeats are transcribed and processed into CRISPR(cr) RNAs that target complementary sequences (protospacers) in mobile genetic elements, resulting in cleavage of the target DNA or RNA. Additional, standalone repeats in some CRISPR-cas loci produce distinct cr-like RNAs implicated in regulatory or other functions. We developed a computational pipeline to systematically predict crRNA-like elements by scanning for standalone repeat sequences that are conserved in closely related CRISPR-cas loci. Numerous crRNA-like elements were detected in diverse CRISPR-Cas systems, mostly, of type I, but also subtype V-A. Standalone repeats often form mini-arrays containing two repeat-like sequence separated by a spacer that is partially complementary to promoter regions of cas genes, in particular cas8, or cargo genes located within CRISPR-Cas loci, such as toxins-antitoxins. We show experimentally that a mini-array from a type I-F1 CRISPR-Cas system functions as a regulatory guide. We also identified mini-arrays in bacteriophages that could abrogate CRISPR immunity by inhibiting effector expression. Thus, recruitment of CRISPR effectors for regulatory functions via spacers with partial complementarity to the target is a common feature of diverse CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas , RNA , Sequências Repetitivas de Ácido Nucleico
19.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078938

RESUMO

Viruses are a distinct type of replicators that encode structural proteins encasing virus genomes in virions. For some of the widespread virus capsid proteins and other major components of virions, likely ancestors encoded by cellular life forms are identifiable. In particular, one of the most common capsid proteins, with the single jelly-roll (SJR) fold, appears to have evolved from a particular family of cellular carbohydrate-binding proteins. However, the double jelly-roll major capsid protein (DJR-MCP), the hallmark of the enormously diverse viruses of the kingdom Bamfordvirae within the realm Varidnaviria, which includes bacterial and archaeal icosahedral viruses as well as eukaryotic giant viruses, has been perceived as a virus innovation that evolved by duplication and fusion of the SJR capsid proteins. Here we employ protein structure comparison to show that the DJR fold is represented in several widespread families of cellular proteins, including several groups of carbohydrate-active enzymes. We show that DJR-MCPs share a common ancestry with a distinct family of bacterial DJR proteins (DUF2961) involved in carbohydrate metabolism. Based on this finding, we propose a scenario in which bamfordviruses evolved from nonviral replicators, in particular plasmids, by recruiting a host protein for capsid formation. This sequence of events appears to be the general route of virus origin. The results of this work indicate that virus kingdoms Bamfordvirae, with the DJR-MCPs, and Helvetiavirae that possess two SJR-MCPs, have distinct origins, suggesting a reappraisal of the realm Varidnaviria.


Assuntos
Proteínas do Capsídeo/genética , Vírus/genética , DNA/genética , Vírus de DNA/genética , Genoma Viral/genética , Vírion/genética
20.
Nucleic Acids Res ; 50(8): 4601-4615, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466371

RESUMO

Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme's shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.


Assuntos
Aminoacil-tRNA Sintetases , Euryarchaeota , Aminoacil-tRNA Sintetases/metabolismo , Lisina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Código Genético , Euryarchaeota/genética , Aminoácidos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa