Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38785709

RESUMO

Hepatocellular carcinoma (HCC) is currently one of the most prevalent cancers worldwide. Associated risk factors include, but are not limited to, cirrhosis and underlying liver diseases, including chronic hepatitis B or C infections, excessive alcohol consumption, nonalcoholic fatty liver disease (NAFLD), and exposure to chemical carcinogens. It is crucial to detect this disease early on before it metastasizes to adjoining parts of the body, worsening the prognosis. Serum biomarkers have proven to be a more accurate diagnostic tool compared to imaging. Among various markers such as nucleic acids, circulating genetic material, proteins, enzymes, and other metabolites, alpha-fetoprotein (AFP) is a protein marker primarily used to diagnose HCC. However, current methods need a large sample and carry a high cost, among other challenges, which can be improved using biosensing technology. Early and accurate detection of AFP can prevent severe progression of the disease and ensure better management of HCC patients. This review sheds light on HCC development in the human body. Afterward, we outline various types of biosensors (optical, electrochemical, and mass-based), as well as the most relevant studies of biosensing modalities for non-invasive monitoring of AFP. The review also explains these sensing platforms, detection substrates, surface modification agents, and fluorescent probes used to develop such biosensors. Finally, the challenges and future trends in routine clinical analysis are discussed to motivate further developments.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Detecção Precoce de Câncer , Neoplasias Hepáticas , alfa-Fetoproteínas , Humanos , Carcinoma Hepatocelular/diagnóstico , alfa-Fetoproteínas/análise , Neoplasias Hepáticas/diagnóstico , Biomarcadores Tumorais
2.
Diagnostics (Basel) ; 14(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39061656

RESUMO

Hepatocellular carcinoma is currently the most common malignancy of the liver. It typically occurs due to a series of oncogenic mutations that lead to aberrant cell replication. Most commonly, hepatocellular carcinoma (HCC) occurs as a result of pre-occurring liver diseases, such as hepatitis and cirrhosis. Given its aggressive nature and poor prognosis, the early screening and diagnosis of HCC are crucial. However, due to its plethora of underlying risk factors and pathophysiologies, patient presentation often varies in the early stages, with many patients presenting with few, if any, specific symptoms in the early stages. Conventionally, screening and diagnosis are performed through radiological examination, with diagnosis confirmed by biopsy. Imaging modalities tend to be limited by their requirement of large, expensive equipment; time-consuming operation; and a lack of accurate diagnosis, whereas a biopsy's invasive nature makes it unappealing for repetitive use. Recently, biosensors have gained attention for their potential to detect numerous conditions rapidly, cheaply, accurately, and without complex equipment and training. Through their sensing platforms, they aim to detect various biomarkers, such as nucleic acids, proteins, and even whole cells extracted by a liquid biopsy. Numerous biosensors have been developed that may detect HCC in its early stages. We discuss the recent updates in biosensing technology, highlighting its competitive potential compared to conventional methodology and its prospects as a tool for screening and diagnosis.

3.
Life (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37374056

RESUMO

Abnormal levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in human serum are the most sensitive indicator of hepatocellular damage. Because liver-related health problems are directly linked to elevated levels of ALT and AST, it is important to develop accurate and rapid methods to detect these enzymes for the early diagnosis of liver disease and prevention of long-term liver damage. Several analytical methods have been developed for the detection of ALT and AST. However, these methods are based on complex mechanisms and require bulky instruments and laboratories, making them unsuitable for point-of-care application or in-house testing. Lateral flow assay (LFA)-based biosensors, on the other hand, provide rapid, accurate, and reliable results, are easy to operate, and are affordable for low-income populations. However, due to the storage, stability, batch-to-batch variations, and error margins, antibody-based LFAs are considered unaffordable for field applications. In this hypothesis, we propose the selection of aptamers with high affinity and specificity for the liver biomarkers ALT and AST to build an efficient LFA device for point-of-care applications. Though the aptamer-based LFA would be semiquantitative for ALT and AST, it would be an inexpensive option for the early detection and diagnosis of liver disease. Aptamer-based LFA is anticipated to minimize the economic burden. It can also be used for routine liver function tests regardless of the economic situation in each country. By developing a low-cost testing platform, millions of patients suffering from liver disease can be saved.

4.
Diagnostics (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37761334

RESUMO

Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are important liver enzymes in clinical settings. Their levels are known to be elevated in individuals with underlying liver diseases and those consuming hepatotoxic drugs. Serum ALT and AST levels are crucial for diagnosing and assessing liver diseases. Serum ALT is considered the most reliable and specific candidate as a disease biomarker for liver diseases. ALT and AST levels are routinely analyzed in high-risk individuals for the bioanalysis of both liver function and complications associated with drug-induced liver injury. Typically, ALT and AST require blood sampling, serum separation, and testing. Traditional methods require expensive or sophisticated equipment and trained specialists, which is often time-consuming. Therefore, developing countries have limited or no access to these methods. To address the above issues, we hypothesize that low-cost biosensing methods (paper-based assays) can be applied to the analysis of ALT and AST levels in biological fluids. The paper-based biodetection technique can semi-quantitatively measure ALT and AST from capillary finger sticks, and it will pave the way for the development of an inexpensive and rapid alternative method for the early detection and diagnosis of liver diseases. This method is expected to significantly reduce the economic burden and aid routine clinical analysis in both developed and underdeveloped countries. The development of low-cost testing platforms and their diagnostic utility will be extremely beneficial in helping millions of patients with liver disorders.

5.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37444523

RESUMO

Lung cancer is the most commonly diagnosed of all cancers and one of the leading causes of cancer deaths among men and women worldwide, causing 1.5 million deaths every year. Despite developments in cancer treatment technologies and new pharmaceutical products, high mortality and morbidity remain major challenges for researchers. More than 75% of lung cancer patients are diagnosed in advanced stages, leading to poor prognosis. Lung cancer is a multistep process associated with genetic and epigenetic abnormalities. Rapid, accurate, precise, and reliable detection of lung cancer biomarkers in biological fluids is essential for risk assessment for a given individual and mortality reduction. Traditional diagnostic tools are not sensitive enough to detect and diagnose lung cancer in the early stages. Therefore, the development of novel bioanalytical methods for early-stage screening and diagnosis is extremely important. Recently, biosensors have gained tremendous attention as an alternative to conventional methods because of their robustness, high sensitivity, inexpensiveness, and easy handling and deployment in point-of-care testing. This review provides an overview of the conventional methods currently used for lung cancer screening, classification, diagnosis, and prognosis, providing updates on research and developments in biosensor technology for the detection of lung cancer biomarkers in biological samples. Finally, it comments on recent advances and potential future challenges in the field of biosensors in the context of lung cancer diagnosis and point-of-care applications.

6.
Clin Microbiol Infect ; 29(5): 570-577, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36642173

RESUMO

BACKGROUND: Post-acute COVID-19 syndrome (PACS) is a well-recognized, complex, systemic disease which is associated with substantial morbidity. There is a paucity of established interventions for the treatment of patients with this syndrome. OBJECTIVES: To systematically review registered trials currently investigating therapeutic modalities for PACS. DATA SOURCES: A search was conducted up to the 16 September, 2022, using the COVID-19 section of the WHO Internal Clinical Trials Registry Platform. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS: Interventional clinical trials of any sample size examining any therapeutic modality targeting persistent symptoms among individuals after diagnosis with COVID-19. METHODS: Data on trial characteristics and intervention characteristics were collected and summarized. RESULTS: After screening 17 125 trials, 388 trials, from 42 countries, were eligible. In total, we had 406 interventions, of which 368 were mono-therapeutic strategies, whereas 38 were intervention combinations. Among 824 primary outcomes identified, there were >300 different outcomes. Rehabilitation was the most employed class of intervention in 169 trials. We encountered 76 trials examining the pharmacological agents of various classes, with the most common agent being colchicine. Complementary and alternative medicine encompassed 64 trials exploring traditional Chinese medicine, Ayurveda, homeopathic medications, naturopathic medications, vitamins, dietary supplements, and botanicals. Psychotherapeutic and educational interventions were also employed in 12 and 4 trials, respectively. Other interventions, including transcranial direct current stimulation, transcutaneous auricular vagus nerve stimulation, general electrical stimulation, cranial electrotherapy stimulation, various stem cell interventions, and oxygen therapy interventions, were also employed. CONCLUSION: We identified 388 registered trials, with a high degree of heterogeneity, exploring 144 unique mono-therapeutic interventions for PACS. Most studies target general alleviation of symptoms. There is a need for further high-quality and methodologically robust PACS treatment trials to be conducted with standardization of outcomes while following WHO's recommendation for uniform evaluation and treatment.


Assuntos
COVID-19 , Estimulação Transcraniana por Corrente Contínua , Humanos , COVID-19/terapia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Organização Mundial da Saúde
7.
Biosensors (Basel) ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291035

RESUMO

The COVID-19 pandemic has severely impacted normal human life worldwide. Due to its rapid community spread and high mortality statistics, the development of prompt diagnostic tests for a massive number of samples is essential. Currently used traditional methods are often expensive, time-consuming, laboratory-based, and unable to handle a large number of specimens in resource-limited settings. Because of its high contagiousness, efficient identification of SARS-CoV-2 carriers is crucial. As the advantages of adopting biosensors for efficient diagnosis of COVID-19 increase, this narrative review summarizes the recent advances and the respective reasons to consider applying biosensors. Biosensors are the most sensitive, specific, rapid, user-friendly tools having the potential to deliver point-of-care diagnostics beyond traditional standards. This review provides a brief introduction to conventional methods used for COVID-19 diagnosis and summarizes their advantages and disadvantages. It also discusses the pathogenesis of COVID-19, potential diagnostic biomarkers, and rapid diagnosis using biosensor technology. The current advancements in biosensing technologies, from academic research to commercial achievements, have been emphasized in recent publications. We covered a wide range of topics, including biomarker detection, viral genomes, viral proteins, immune responses to infection, and other potential proinflammatory biomolecules. Major challenges and prospects for future application in point-of-care settings are also highlighted.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , Pandemias , SARS-CoV-2 , Teste para COVID-19 , Técnicas Biossensoriais/métodos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa