RESUMO
Most adult carcinomas develop from noninvasive precursor lesions, a progression that is supported by genetic analysis. However, the evolutionary and genetic relationships among co-existing lesions are unclear. Here we analysed the somatic variants of pancreatic cancers and precursor lesions sampled from distinct regions of the same pancreas. After inferring evolutionary relationships, we found that the ancestral cell had initiated and clonally expanded to form one or more lesions, and that subsequent driver gene mutations eventually led to invasive pancreatic cancer. We estimate that this multi-step progression generally spans many years. These new data reframe the step-wise progression model of pancreatic cancer by illustrating that independent, high-grade pancreatic precursor lesions observed in a single pancreas often represent a single neoplasm that has colonized the ductal system, accumulating spatial and genetic divergence over time.
Assuntos
Ductos Pancreáticos/patologia , Lesões Pré-Cancerosas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem da Célula/genética , Progressão da Doença , Evolução Molecular , Humanos , Mutação INDEL/genética , Modelos Biológicos , Mutagênese , Invasividade Neoplásica , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Polimorfismo de Nucleotídeo Único/genética , Lesões Pré-Cancerosas/genética , Fatores de Tempo , Sequenciamento do ExomaRESUMO
Pancreatic cancer is one of the most lethal malignancies, yet much remains to be learned regarding how its precursors develop. In a recent Nature publication, Braxton and Kiemen et al. found that the normal, adult pancreas harbors hundreds to thousands of pancreatic cancer precursors evolving by a variety of routes.
Assuntos
Evolução Clonal , Pâncreas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Evolução Clonal/genética , Pâncreas/patologiaRESUMO
The genomic features of pancreatic ductal adenocarcinoma (PDAC) have been well described, yet the evolutionary contexts within which those features occur remains unexplored. We studied the genome landscapes, phylogenies and clonal compositions of 91 PDACs in relation to clinicopathologic features. There was no difference in the number of driver mutations or the evolutionary timing that each mutation occurred. High truncal density, a metric of the accumulation of somatic mutations in the lineage that gave rise to each PDAC, was significantly associated with worse overall survival. Polyclonal, monoclonal or mixed polyclonal/monoclonal metastases were identified across the cohort highlighting multiple forms of inter-tumoral heterogeneity. Advanced stage and treated PDACs had higher odds of being polyclonal, whereas oligometastatic PDACs had fewer driver alterations, a lower fractional allelic loss and increased likelihood of being monoclonal. In sum, our findings reveal novel insights into the dynamic nature of the PDAC genome beyond established genetic paradigms.
RESUMO
We performed a comparative analysis of human and 12 non-human primates to identify sequence variations in known cancer genes. We identified 395 human-specific fixed non-silent substitutions that emerged during evolution of human. Using bioinformatics analyses for functional consequences, we identified a number of substitutions that are predicted to alter protein function; one of these mutations is located at the most evolutionarily conserved domain of human BRCA2.
Assuntos
Pan troglodytes , Primatas , Animais , Proteína BRCA2/genética , Evolução Molecular , Humanos , Mutação/genética , Pan troglodytes/genética , Proteínas/metabolismoRESUMO
PURPOSE: Melanoma is a biologically heterogeneous disease composed of distinct clinicopathologic subtypes that frequently resist treatment. To explore the evolution of treatment resistance and metastasis, we used a combination of temporal and multilesional tumor sampling in conjunction with whole-exome sequencing of 110 tumors collected from 7 patients with cutaneous (n = 3), uveal (n = 2), and acral (n = 2) melanoma subtypes. EXPERIMENTAL DESIGN: Primary tumors, metastases collected longitudinally, and autopsy tissues were interrogated. All but 1 patient died because of melanoma progression. RESULTS: For each patient, we generated phylogenies and quantified the extent of genetic diversity among tumors, specifically among putative somatic alterations affecting therapeutic resistance. CONCLUSIONS: In 4 patients who received immunotherapy, we found 1-3 putative acquired and intrinsic resistance mechanisms coexisting in the same patient, including mechanisms that were shared by all tumors within each patient, suggesting that future therapies directed at overcoming intrinsic resistance mechanisms may be broadly effective.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Evolução Molecular , Imunoterapia/métodos , Melanoma/patologia , Mutação , Neoplasias Cutâneas/patologia , Neoplasias Uveais/patologia , Biomarcadores Tumorais , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/imunologia , Prognóstico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/imunologiaRESUMO
Pancreatic cancer expression profiles largely reflect a classical or basal-like phenotype. The extent to which these profiles vary within a patient is unknown. We integrated evolutionary analysis and expression profiling in multiregion-sampled metastatic pancreatic cancers, finding that squamous features are the histologic correlate of an RNA-seq-defined basal-like subtype. In patients with coexisting basal and squamous and classical and glandular morphology, phylogenetic studies revealed that squamous morphology represented a subclonal population in an otherwise classical and glandular tumor. Cancers with squamous features were significantly more likely to have clonal mutations in chromatin modifiers, intercellular heterogeneity for MYC amplification and entosis. These data provide a unifying paradigm for integrating basal-type expression profiles, squamous histology and somatic mutations in chromatin modifier genes in the context of clonal evolution of pancreatic cancer.
Assuntos
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma de Células Escamosas/genética , Cromatina , Humanos , Neoplasias Pancreáticas/genética , Filogenia , Neoplasias PancreáticasRESUMO
Surgery is the only curative option for stage I/II pancreatic cancer; nonetheless, most patients will experience a recurrence after surgery and die of their disease. To identify novel opportunities for management of recurrent pancreatic cancer, we performed whole-exome or targeted sequencing of 10 resected primary cancers and matched intrapancreatic recurrences or distant metastases. We identified that recurrent disease after adjuvant or first-line platinum therapy corresponds to an increased mutational burden. Recurrent disease is enriched for genetic alterations predicted to activate MAPK/ERK and PI3K-AKT signaling and develops from a monophyletic or polyphyletic origin. Treatment-induced genetic bottlenecks lead to a modified genetic landscape and subclonal heterogeneity for driver gene alterations in part due to intermetastatic seeding. In 1 patient what was believed to be recurrent disease was an independent (second) primary tumor. These findings suggest routine post-treatment sampling may have value in the management of recurrent pancreatic cancer. SIGNIFICANCE: The biological features or clinical vulnerabilities of recurrent pancreatic cancer after pancreaticoduodenectomy are unknown. Using whole-exome sequencing we find that recurrent disease has a distinct genomic landscape, intermetastatic genetic heterogeneity, diverse clonal origins, and higher mutational burden than found for treatment-naïve disease.See related commentary by Bednar and Pasca di Magliano, p. 762.This article is highlighted in the In This Issue feature, p. 747.
Assuntos
Carcinoma Ductal Pancreático/genética , Metástase Neoplásica/genética , Recidiva Local de Neoplasia/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/secundário , Evolução Molecular , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias Pancreáticas/patologia , Sequenciamento do ExomaRESUMO
Genetic intratumoural heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. Here, we review the different forms of genetic heterogeneity in cancer and re-analyse the extent of genetic heterogeneity within seven types of untreated epithelial cancers, with particular regard to its clinical relevance. We find that the homogeneity of predicted functional mutations in driver genes is the rule rather than the exception. In primary tumours with multiple samples, 97% of driver-gene mutations in 38 patients were homogeneous. Moreover, among metastases from the same primary tumour, 100% of the driver mutations in 17 patients were homogeneous. With a single biopsy of a primary tumour in 14 patients, the likelihood of missing a functional driver-gene mutation that was present in all metastases was 2.6%. Furthermore, all functional driver-gene mutations detected in these 14 primary tumours were present among all their metastases. Finally, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These analyses indicate that the cells within the primary tumours that gave rise to metastases are genetically homogeneous with respect to functional driver-gene mutations, and we suggest that future efforts to develop combination therapies have the potential to be curative.
Assuntos
Heterogeneidade Genética , Mutação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Animais , Biópsia , Ensaios Clínicos como Assunto , Epigênese Genética , Humanos , Oncologia , Metástase NeoplásicaRESUMO
Metastases are responsible for the majority of cancer-related deaths. Although genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment-naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients, a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Thus, single biopsies capture most of the functionally important mutations in metastases and therefore provide essential information for therapeutic decision-making.
Assuntos
Heterogeneidade Genética , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Humanos , Modelos Teóricos , Mutação , Metástase Neoplásica/patologia , Neoplasias/patologiaRESUMO
Reconstructing the evolutionary history of metastases is critical for understanding their basic biological principles and has profound clinical implications. Genome-wide sequencing data has enabled modern phylogenomic methods to accurately dissect subclones and their phylogenies from noisy and impure bulk tumour samples at unprecedented depth. However, existing methods are not designed to infer metastatic seeding patterns. Here we develop a tool, called Treeomics, to reconstruct the phylogeny of metastases and map subclones to their anatomic locations. Treeomics infers comprehensive seeding patterns for pancreatic, ovarian, and prostate cancers. Moreover, Treeomics correctly disambiguates true seeding patterns from sequencing artifacts; 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumour heterogeneity among distinct samples. In silico benchmarking on simulated tumour phylogenies across a wide range of sample purities (15-95%) and sequencing depths (25-800 × ) demonstrates the accuracy of Treeomics compared with existing methods.
Assuntos
DNA de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Pancreáticas/genética , Neoplasias da Próstata/genética , Proteômica/métodos , Teorema de Bayes , Benchmarking , DNA de Neoplasias/metabolismo , Feminino , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Metástase Neoplásica , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Filogenia , Neoplasias da Próstata/classificação , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologiaRESUMO
PURPOSE: Anastomotic recurrences (AR) occur in 2-10% of colorectal carcinoma cases after resection of primary tumor (PT). Currently, there are no molecular data investigating their genetic profile and multiple theories exist about their pathogenesis. The aim of our study was to compare the genomic profile of AR to that of the patients' corresponding matched PT and, when available, to a distant metastasis (DM). EXPERIMENTAL DESIGN: Thirty-six tumors from 14 patients were genotyped using a capture-based, next-generation assay to define the mutational status of 341 cancer-associated genes. All patients had R0 resection of their PT and AR occurred 1.1-7.0 years following PT resection. A DM or a second AR was analyzed in 8 patients. All tumors were microsatellite stable except in one patient with Lynch syndrome. RESULTS: A total of 254 somatic mutations were detected including 138 mutations in the microsatellite stable (MSS) cases. The most commonly mutated genes were APC, KRAS, TP53, PIK3CA, ATM and PIK3R1. In all patients with MSS tumors the AR and PT shared between 50-100% of mutations, including mutations in key driver genes, consistent with these tumors being clonally related. Genetic events private to DM were not detected in AR and phylogenetic analysis showed that ARs were more closely related to PT than DM. In the Lynch syndrome patient the PT and AR showed distinct somatic mutations consistent with independent primaries. CONCLUSIONS: ARs are clonally related to PT in sporadic colorectal carcinomas and do not appear to represent seeding of the anastomotic site by distant metastases.
Assuntos
Evolução Clonal , Neoplasias Colorretais/patologia , Idoso , Biomarcadores Tumorais , Evolução Clonal/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Taxa de Mutação , Metástase Neoplásica , Recidiva Local de Neoplasia , Estadiamento de NeoplasiasRESUMO
The extent of heterogeneity among driver gene mutations present in naturally occurring metastases-that is, treatment-naive metastatic disease-is largely unknown. To address this issue, we carried out 60× whole-genome sequencing of 26 metastases from four patients with pancreatic cancer. We found that identical mutations in known driver genes were present in every metastatic lesion for each patient studied. Passenger gene mutations, which do not have known or predicted functional consequences, accounted for all intratumoral heterogeneity. Even with respect to these passenger mutations, our analysis suggests that the genetic similarity among the founding cells of metastases was higher than that expected for any two cells randomly taken from a normal tissue. The uniformity of known driver gene mutations among metastases in the same patient has critical and encouraging implications for the success of future targeted therapies in advanced-stage disease.
Assuntos
Mutação/genética , Metástase Neoplásica/genética , Neoplasias Pancreáticas/genética , HumanosRESUMO
Hosts are commonly infected with a suite of parasites, and interactions among these parasites can affect the size, structure, and behavior of host-parasite communities. As an important step to understanding the significance of co-circulating parasites, we describe prevalence of co-circulating hemoparasites in two important avian amplification hosts for West Nile virus (WNV), the American robin (Turdus migratorius) and house sparrow (Passer domesticus), during the 2010-2011 in Chicago, Illinois, USA. Rates of nematode microfilariemia were 1.5% of the robins (n = 70) and 4.2% of the house sparrows (n = 72) collected during the day and 11.1% of the roosting robins (n = 63) and 0% of the house sparrows (n = 11) collected at night. Phylogenetic analysis of nucleotide sequences of the 18S rRNA and cytochrome oxidase subunit I (COI) genes from these parasites resolved two clades of filarioid nematodes. Microscopy revealed that 18.0% of American robins (n = 133) and 16.9% of house sparrows (n = 83) hosted trypanosomes in the blood. Phylogenetic analysis of nucleotide sequences from the 18s rRNA gene revealed that the trypanosomes fall within previously described avian trypanosome clades. These results document hemoparasites in the blood of WNV hosts in a center of endemic WNV transmission, suggesting a potential for direct or indirect interactions with the virus.