Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 25(24): 6523-6535, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29089259

RESUMO

Inhibition of protein kinases is a validated concept for pharmacological intervention in cancers. Many kinase inhibitors have been approved for clinical use, but their practical application is often limited. Here, we describe a collection of 23 novel 2,6,9-trisubstituted purine derivatives with nanomolar inhibitory activities against PDGFRα, a receptor tyrosine kinase often found constitutively activated in various tumours. The compounds demonstrated strong and selective cytotoxicity in the human eosinophilic leukemia cell line EOL-1, whereas several other cell lines were substantially less sensitive. The cytotoxicity in EOL-1, which is known to express the FIP1L1-PDGFRA fusion gene encoding an oncogenic kinase, correlated significantly with PDGFRα inhibition. EOL-1 cells treated with the compounds also exhibited dose-dependent inhibition of PDGFRα autophosphorylation and suppression of its downstream signaling pathways with concomitant G1 phase arrest, confirming the proposed mechanism of action. Our results show that substituted purines can be used as platforms for preparing tyrosine kinase inhibitors with specific activity towards eosinophilic leukemia.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Purinas/síntese química , Purinas/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Eur J Med Chem ; 150: 908-919, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29602037

RESUMO

An efficient synthetic route for the synthesis of 2H-pyrazolo[4,3-c]pyridines, primarily varying by the substituents at the 2-, 4- and 6-positions, is described here. A Sonogashira-type cross-coupling reaction was employed to yield 3-alkynyl-1H-pyrazole-4-carbaldehydes, ethanones and propanones from the corresponding 1H-pyrazol-3-yl trifluoromethanesulfonates. Subsequent treatment of the coupling products with dry ammonia afforded a versatile library of 2H-pyrazolo[4,3-c]pyridines, which were then evaluated for their cytotoxicity against K562 and MCF-7 cancer cell lines. The most potent of these compounds displayed low micromolar GI50 values in both cell lines. Active compounds induced dose-dependent cell-cycle arrest in mitosis, as shown by flow cytometric analysis of DNA content and phosphorylation of histone H3 at serine-10. Moreover, biochemical assays revealed increased activities of caspases-3/7 in treated cells, specific fragmentation of PARP-1, and phosphorylation of Bcl-2, collectively confirming apoptosis as the mechanism of cell death.


Assuntos
Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Mitose/efeitos dos fármacos , Piridinas/farmacologia , Antimitóticos/síntese química , Antimitóticos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células K562 , Células MCF-7 , Estrutura Molecular , Piridinas/química , Relação Estrutura-Atividade
3.
J Med Chem ; 61(9): 3855-3869, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29672049

RESUMO

FLT3 tyrosine kinase is a potential drug target in acute myeloid leukemia (AML) because patients with FLT3-ITD mutations respond poorly to standard cytotoxic agents and there is a clear link between the disease and the oncogenic properties of FLT3. We present novel 2,6,9-trisubstituted purine derivatives with potent FLT3 inhibitory activity. The lead compound 7d displays nanomolar activity in biochemical assays and selectively blocks proliferation of AML cell lines harboring FLT3-ITD mutations, whereas other transformed and normal human cells are several orders of magnitude less sensitive. The MV4-11 cells treated with 7d suppressed the phosphorylation of FLT3 and its downstream signaling pathways, with subsequent G1 cell cycle arrest and apoptosis. Additionally, a single dose of 7d in mice with subcutaneous MV4-11 xenografts caused sustained inhibition of FLT3 and STAT5 phosphorylation over 48 h, in contrast to the shorter effect observed after administration of the reference FLT3 inhibitor quizartinib.


Assuntos
Antineoplásicos/farmacologia , Diaminas/farmacologia , Descoberta de Drogas , Leucemia Mieloide Aguda/patologia , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Diaminas/química , Diaminas/metabolismo , Leucemia Mieloide Aguda/genética , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo
4.
Expert Opin Ther Pat ; 25(9): 953-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161698

RESUMO

INTRODUCTION: Cell cycle deregulation is a common characteristic of cancer cells. Progression through the cell cycle is controlled by enzymes known as cyclin-dependent kinases (CDKs), whose activity can be upregulated by a wide range of molecular mechanisms. Based on these observations, small molecule CDK inhibitors are being developed as potential cancer therapeutics. Some of these compounds have entered Phase III clinical trials and one of them, palbociclib, recently received accelerated approval from the FDA. However, the complexity of CDK biology and the undesired side effects of the existing inhibitors mean that the hunt for new CDK-targeting drug candidates continues. AREAS COVERED: This article reviews patent applications related to small molecule CDK inhibitors published between 2009 and 2014. EXPERT OPINION: Clinical trials with pan-specific inhibitors have generally yielded unambiguously positive outcomes. However, better results have been achieved with highly specific inhibitors of CDK4/CDK6. This may be due to several factors and has generated considerable interest in the discovery of new mono-specific CDK inhibitors. The development of such compounds is challenging because all CDKs have very similar active sites. Aside from this issue of selectivity, another key challenge is the identification of patients who will benefit from specific therapies.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Aprovação de Drogas , Desenho de Fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Patentes como Assunto , Inibidores de Proteínas Quinases/efeitos adversos
5.
Eur J Med Chem ; 61: 61-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22770608

RESUMO

Several inhibitors of cyclin-dependent kinases (CDKs), including the 2,6,9-trisubstituted purine derivative roscovitine, are currently being evaluated in clinical trials as potential anticancer drugs. Here, we describe a new series of roscovitine derivatives that show increased potency in vitro. The series was tested for cytotoxicity against six cancer cell lines and for inhibition of CDKs. For series bearing 2-(hydroxyalkylamino) moiety, cytotoxic potency strongly correlated with anti-CDK2 activity. Importantly, structural changes that increase biochemical and anticancer activities of these compounds also increase elimination half-life. The most potent compounds were investigated further to assess their ability to influence cell cycle progression, p53-regulated transcription and apoptosis. All the observed biological effects were consistent with inhibition of CDKs involved in the regulation of cell cycle and transcription.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Purinas/química , Purinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Células K562 , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Purinas/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa