Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298423

RESUMO

Fission yeast ribosomal protein genes (RPGs) contain a HomolD box as a core promoter element required for transcription. Some of the RPGs also contain a consensus sequence named HomolE, located upstream of the HomolD box. The HomolE box acts as an upstream activating sequence (UAS), and it is able to activate transcription in RPG promoters containing a HomolD box. In this work, we identified a HomolE-binding protein (HEBP) as a polypeptide of 100 kDa, which was able to bind to the HomolE box in a Southwestern blot assay. The features of this polypeptide were similar to the product of the fhl1 gene of fission yeast. The Fhl1 protein is the homolog of the FHL1 protein of budding yeast and possesses fork-head-associated (FHA) and fork-head (FH) domains. The product of the fhl1 gene was expressed and purified from bacteria, and it was demonstrated that is able to bind the HomolE box in an electrophoretic mobility assay (EMSA), as well as being able to activate in vitro transcription from an RPG gene promoter containing HomolE boxes upstream of the HomolD box. These results indicate that the product of the fhl1 gene of fission yeast can bind to the HomolE box, and it activates the transcription of RPGs.


Assuntos
Schizosaccharomyces , Proteínas de Transporte/metabolismo , Regiões Promotoras Genéticas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transcrição Gênica
2.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835452

RESUMO

Breast cancer (BC) is the most common cancer among women worldwide. BRCA1/2 are responsible for 16-20% of the risk for hereditary BC. Other susceptibility genes have been identified; Fanconi Anemia Complementation Group M (FANCM) being one of these. Two variants in FANCM, rs144567652 and rs147021911, are associated with BC risk. These variants have been described in Finland, Italy, France, Spain, Germany, Australia, the United States, Sweden, Finnish, and the Netherlands, but not in the South American populations. Our study evaluated the association of the SNPs rs144567652 and rs147021911 with BC risk in non-carriers of BRCA1/2 mutations from a South American population. The SNPs were genotyped in 492 BRCA1/2-negative BC cases and 673 controls. Our data do not support an association between FANCM rs147021911 and rs144567652 SNPs and BC risk. Nevertheless, two BC cases, one with a family history of BC and the other with sporadic early-onset BC, were C/T heterozygotes for rs144567652. In conclusion, this is the first study related contribution of FANCM mutations and BC risk in a South American population. Nevertheless, more studies are necessary to evaluate if rs144567652 could be responsible for familial BC in BRCA1/2-negatives and for early-onset non-familial BC in Chilean BC cases.


Assuntos
Neoplasias da Mama , DNA Helicases , Predisposição Genética para Doença , Feminino , Humanos , Neoplasias da Mama/genética , Chile/epidemiologia , DNA Helicases/genética , Mutação , Idade de Início
3.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003265

RESUMO

Cancer is a genomic disease, with driver mutations contributing to tumorigenesis. These potentially heritable variants influence risk and underlie familial breast cancer (BC). This study evaluated associations between BC risk and 13 SNPs in driver genes MAP3K1, SF3B1, SMAD4, ARID2, ATR, KMT2C, MAP3K13, NCOR1, and TBX3, in BRCA1/2-negative Chilean families. SNPs were genotyped using TaqMan Assay in 492 cases and 1285 controls. There were no associations between rs75704921:C>T (ARID2); rs2229032:A>C (ATR); rs3735156:C>G (KMT2C); rs2276738:G>C, rs2293906:C>T, rs4075943T:>A, rs13091808:C>T (MAP3K13); rs178831:G>A (NCOR1); or rs3759173:C>A (TBX3) and risk. The MAP3K1 rs832583 A allele (C/A+A/A) showed a protective effect in families with moderate BC history (OR = 0.7 [95% CI 0.5-0.9] p = 0.01). SF3B1 rs16865677-T (G/T+T/T) increased risk in sporadic early-onset BC (OR = 1.4 [95% CI 1.0-2.0] p = 0.01). SMAD4 rs3819122-C (A/C+C/C) increased risk in cases with moderate family history (OR = 2.0 [95% CI 1.3-2.9] p ≤ 0.0001) and sporadic cases diagnosed ≤50 years (OR = 1.6 [95% CI 1.1-2.2] p = 0.006). SMAD4 rs12456284:A>G increased BC risk in G-allele carriers (A/G + G/G) in cases with ≥2 BC/OC cases and early-onset cases (OR = 1.2 [95% CI 1.0-1.6] p = 0.04 and OR = 1.4 [95% CI 1.0-1.9] p = 0.03, respectively). Our study suggests that specific germline variants in driver genes MAP3K1, SF3B1, and SMAD4 contribute to BC risk in Chilean population.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Proteína BRCA1/genética , Chile/epidemiologia , Predisposição Genética para Doença , Proteína BRCA2/genética , Mutação em Linhagem Germinativa , Células Germinativas , Polimorfismo de Nucleotídeo Único
4.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743306

RESUMO

The Pneumocystis genus is an opportunistic fungal pathogen that infects patients with AIDS and immunocompromised individuals. The study of this fungus has been hampered due to the inability to grow it in a (defined media/pure) culture. However, the use of modern molecular techniques and genomic analysis has helped researchers to understand its complex cell biology. The transcriptional process in the Pneumocystis genus has not been studied yet, although it is assumed that it has conventional transcriptional machinery. In this work, we have characterized the function of the RNA polymerase II (RNAPII) general transcription factor TFIIB from Pneumocystis carinii using the phylogenetically related biological model Schizosaccharomyces pombe. The results of this work show that Pneumocystis carinii TFIIB is able to replace the essential function of S. pombe TFIIB both in in vivo and in vitro assays. The S. pombe strain harboring the P carinii TFIIB grew slower than the parental wild-type S. pombe strain in complete media and in minimal media. The S. pombe cells carrying out the P. carinii TFIIB are larger than the wild-type cells, indicating that the TFIIB gene replacement confers a phenotype, most likely due to defects in transcription. P. carinii TFIIB forms very weak complexes with S. pombe TATA-binding protein on a TATA box promoter but it is able to form stable complexes in vitro when S. pombe TFIIF/RNAPII are added. P. carinii TFIIB can also replace the transcriptional function of S. pombe TFIIB in an in vitro assay. The transcription start sites (TSS) of the endogenous adh gene do not change when P. carinii TFIIB replaces S. pombe TFIIB, and neither does the TSS of the nmt1 gene, although this last gene is poorly transcribed in vivo in the presence of P. carinii TFIIB. Since transcription by RNA polymerase II in Pneumocystis is poorly understood, the results described in this study are promising and indicate that TFIIB from P. carinii can replace the transcriptional functions of S. pombe TFIIB, although the cells expressing the P. carini TFIIB show an altered phenotype. However, performing studies using a heterologous approach, like this one, could be relevant to understanding the basic molecular processes of Pneumocystis such as transcription and replication.


Assuntos
Pneumocystis carinii , Pneumocystis , Pneumonia por Pneumocystis , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Pneumocystis/genética , Pneumocystis/metabolismo , Pneumocystis carinii/genética , Pneumocystis carinii/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fator de Transcrição TFIIB , Transcrição Gênica
5.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012759

RESUMO

Positive cofactor 4 (PC4) is a transcriptional coactivator that plays important roles in transcription and DNA replication. In mammals, PC4 is phosphorylated by CK2, and this event downregulates its RNA polymerase II (RNAPII) coactivator function. This work describes the effect of fission yeast PC4 phosphorylation on RNAPII transcription in a cell extract, which closely resembles the cellular context. We found that fission yeast PC4 is strongly phosphorylated by the catalytic subunit of CK2 (Cka1), while the regulatory subunit (Ckb1) downregulates the PC4 phosphorylation. The addition of Cka1 to an in vitro transcription assay can diminish the basal transcription from the Ad-MLP promoter; however, the addition of recombinant fission yeast PC4 or Ckb1 can stimulate the basal transcription in a cell extract. Fission yeast PC4 is phosphorylated in a domain which has consensus phosphorylation sites for CK2, and two serine residues were identified as critical for CK2 phosphorylation. Mutation of one of the serine residues in PC4 does not completely abolish the phosphorylation; however, when the two serine residues are mutated, CK2 is no longer able to phosphorylate PC4. The mutant which is not phosphorylated is able to stimulate transcription even though it is previously phosphorylated by Cka1, while the wild type and the point mutant are inactivated by Cka1 phosphorylation, and they cannot stimulate transcription by RNAPII in cell extracts. Those results demonstrate that CK2 can regulate the coactivator function of fission yeast PC4 and suggests that this event could be important in vivo as well.


Assuntos
Caseína Quinase II , Proteínas de Ligação a DNA , RNA Polimerase II , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Domínio Catalítico , Extratos Celulares , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fosforilação , RNA Polimerase II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Serina/metabolismo
6.
Biol Res ; 54(1): 26, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454612

RESUMO

Breast cancer (BC), a heterogeneous, aggressive illness with high mortality, is essentially a genomic disease. While the high-penetrance genes BRCA1 and BRCA2 play important roles in tumorigenesis, moderate- and low-penetrance genes are also involved. Single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes have recently been identified as BC risk factors. miRNA genes are currently classified as low-penetrance. SNPs are the most common variations in the human genome. While the role of miRNA SNPs in BC susceptibility has been studied extensively, results have been inconsistent. This review analyzes the results of association studies between miRNA SNPs and BC risk from countries around the world. We conclude that: (a) By continent, the largest proportion of studies to date were conducted in Asia (65.0 %) and the smallest proportion in Africa (1.8 %); (b) Association studies have been completed for 67 different SNPs; (c) 146a, 196a2, 499, 27a, and 423 are the most-studied miRNAs; (d) The SNPs rs2910164 (miRNA-146a), rs11614913 (miRNA-196a2), rs3746444 (miRNA-499) and rs6505162 (miRNA-423) were the most widely associated with increased BC risk; (e) The majority of studies had small samples, which may affect the precision and power of the results; and (f) The effect of an SNP on BC risk depends on the ethnicity of the population. This review also discusses potential explanations for controversial findings.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética
7.
J Cell Biochem ; 117(2): 334-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26138431

RESUMO

Oncogenic kinase Aurora A (AURKA) has been found to be overexpresed in several tumors including colorectal, breast, and hematological cancers. Overexpression of AURKA induces centrosome amplification and aneuploidy and it is related with cancer progression and poor prognosis. Here we show that AURKA phosphorylates in vitro the transcripcional co-repressor Ski on aminoacids Ser326 and Ser383. Phosphorylations on these aminoacids decreased Ski protein half-life. Reduced levels of Ski resulted in centrosomes amplification and multipolar spindles formation, same as AURKA overexpressing cells. Importantly, overexpression of Ski wild type, but not S326D and S383D mutants inhibited centrosome amplification and cellular transformation induced by AURKA. Altogether, these results suggest that the Ski protein is a target in the transformation pathway mediated by the AURKA oncogene.


Assuntos
Aurora Quinase A/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Sequência de Aminoácidos , Animais , Centrossomo/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Fosforilação , Processamento de Proteína Pós-Traducional , Fuso Acromático/metabolismo
8.
Parasitol Res ; 114(4): 1313-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25566774

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a major parasitic disease that affects millions of people in America. However, despite the high impact of this disease on human health, no effective and safe treatment has been found that eliminates the infecting parasite from human patients. Among the possible chemotherapeutic targets that could be considered for study in T. cruzi are the DNA polymerases, in particular DNA polymerase beta (polß), which previous studies have shown to be involved in kinetoplast DNA replication and repair. In this paper, we describe the expression, purification, and biochemical characterization of the Miranda clone polß, corresponding to lineage T. cruzi I (TcI). The recombinant enzyme purified to homogeneity displayed specific activity in the range described for a highly purified mammalian polß. However, the trypanosome enzyme exhibited important differences in biochemical properties compared to the mammalian enzymes, specifically an almost absolute dependency on KCl, high sensitivity to N-ethylmaleimide (NEM), and low sensitivity to ddTTP. Immuno-affinity purification of T. cruzi polymerase beta (Tcpolß) from epimastigote extracts showed that the native enzyme was phosphorylated. In addition, it was demonstrated that Tcpolß interacts with some proteins in a group of about 15 proteins which are required to repair 1-6 bases of gaps of a double strand damaged DNA. It is possible that these proteins form part of a DNA repair complex, analogous to that described in mammals and some trypanosomatids.


Assuntos
Doença de Chagas/parasitologia , DNA Polimerase beta/genética , Regulação Enzimológica da Expressão Gênica , Trypanosoma cruzi/enzimologia , DNA Polimerase beta/efeitos dos fármacos , DNA Polimerase beta/isolamento & purificação , DNA Polimerase beta/metabolismo , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , Didesoxinucleotídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Etilmaleimida/farmacologia , Humanos , Fosforilação , Filogenia , Análise de Sequência de DNA , Nucleotídeos de Timina/farmacologia , Trypanosoma cruzi/genética
9.
Microorganisms ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792752

RESUMO

Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolß) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolß by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolß. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolß. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolß phosphorylation and enzymatic activity in T. cruzi epimastigotes.

10.
Antioxidants (Basel) ; 12(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36978899

RESUMO

Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.

11.
J Chromatogr A ; 1707: 464266, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37572383

RESUMO

In-mouth interaction of red wine compounds with salivary proteins is a primary event allegedly responsible for eliciting the mouth-feel sensation of astringency. Those interactions have been currently associated with precipitation of salivary protein/polyphenol complexes. However, such single physicochemical evidence for interaction does not account for the complexity of astringency. This study aimed to develop a paper chromatography method to assess interactions between red wine and the salivary protein fraction using stepwise series of red wine/saliva binary mixtures from 100% wine to 100% saliva ("Alpha and Omega series"). Aliquots of each one of the mixtures were spotted on a cellulose membrane to scrutinize independently the distribution areas of wine components (naturally pink-colored) and salivary protein (stained blue in Coomassie Brilliant R-250). This double target detection revealed interactions between saliva and red wine components along most of the quantitative Alpha and Omega series, a point of equivalence corresponding to maximum interactivity for both complex reactants and a non-diffusible sub-fraction of saliva displaying the highest interactivity. The results indicate a novel way to assess quantitatively physicochemical interactions between red wines and human saliva but also provide new lights to approach the identification of molecular salivary structures involved in triggering astringency.


Assuntos
Saliva , Vinho , Humanos , Saliva/química , Vinho/análise , Polifenóis/análise , Adstringentes/análise , Adstringentes/química , Adstringentes/metabolismo , Proteínas e Peptídeos Salivares
12.
J Biol Chem ; 286(30): 26480-6, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21673110

RESUMO

The region in promoters that specifies the transcription machinery is called the core promoter, displaying core promoter elements (CPE) necessary for establishment of a preinitiation complex and the initiation of transcription. A classical CPE is the TATA box. In fission yeast, Schizosaccharomyces pombe, a new CPE, called HomolD box, was discovered. Collectively, 141 ribosomal protein genes encoding the full set of 79 different ribosomal proteins and more than 60 other housekeeping genes display a HomolD box in the core promoter. Here, we show that transcription directed by the HomolD box requires the RNA polymerase II machinery, including the general transcription factors. Most intriguingly, however, we identify, by DNA affinity purification, Rrn7 as the protein binding to the HomolD box. Rrn7 is an evolutionary conserved member of the RNA polymerase I machinery involved in transcription initiation of core ribosomal DNA promoters. ChIP shows that Rrn7 cross-links to a ribosomal protein gene promoter containing the HomolD box but not to a promoter containing a TATA box. Taken together, our results suggest that Rrn7 is an excellent candidate to be involved in the coordination of ribosomal DNA and ribosomal gene transcription during ribosome synthesis and, therefore, offer a new perspective to study conservation and evolvability of regulatory networks in eukaryotes.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Elementos de Resposta/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transcrição Gênica/fisiologia , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Evolução Molecular , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , RNA Polimerase I/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
13.
Vaccines (Basel) ; 10(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455336

RESUMO

Chagas disease is caused by the protozoan Trypanosoma cruzi and is endemic to Central and South America. However, it has spread around the world and affects several million people. Treatment with currently available drugs cause several side effects and require long treatment times to eliminate the parasite, however, this does not improve the chronic effects of the disease such as cardiomyopathy. A therapeutic vaccine for Chagas disease may be able to prevent the disease and improve the chronic effects such as cardiomyopathy. This vaccine would be beneficial for both infected people and those which are at risk in endemic and non-endemic areas. In this article, we will review the surface antigens of T. cruzi, in order to choose those that are most antigenic and least variable, to design effective vaccines against the etiological agent of Chagas disease. Also, we discuss aspects of the design of nucleic acid-based vaccines, which have been developed and proven to be effective against the SARS-CoV-2 virus. The role of co-adjuvants and delivery carriers is also discussed. We present an example of a chimeric trivalent vaccine, based on experimental work, which can be used to design a vaccine against Chagas disease.

14.
Genes (Basel) ; 13(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35205279

RESUMO

Transcriptional coactivators play a key role in RNA polymerase II transcription and gene regulation. One of the most important transcriptional coactivators is the Mediator (MED) complex, which is an evolutionary conserved large multiprotein complex. MED transduces the signal between DNA-bound transcriptional activators (gene-specific transcription factors) to the RNA polymerase II transcription machinery to activate transcription. It is known that MED plays an essential role in ER-mediated gene expression mainly through the MED1 subunit, since estrogen receptor (ER) can interact with MED1 by specific protein-protein interactions; therefore, MED1 plays a fundamental role in ER-positive breast cancer (BC) etiology. Additionally, other MED subunits also play a role in BC etiology. On the other hand, microRNAs (miRNAs) are a family of small non-coding RNAs, which can regulate gene expression at the post-transcriptional level by binding in a sequence-specific fashion at the 3' UTR of the messenger RNA. The miRNAs are also important factors that influence oncogenic signaling in BC by acting as both tumor suppressors and oncogenes. Moreover, miRNAs are involved in endocrine therapy resistance of BC, specifically to tamoxifen, a drug that is used to target ER signaling. In metazoans, very little is known about the transcriptional regulation of miRNA by the MED complex and less about the transcriptional regulation of miRNAs involved in BC initiation and progression. Recently, it has been shown that MED1 is able to regulate the transcription of the ER-dependent miR-191/425 cluster promoting BC cell proliferation and migration. In this review, we will discuss the role of MED1 transcriptional coactivator in the etiology of BC and in endocrine therapy-resistance of BC and also the contribution of other MED subunits to BC development, progression and metastasis. Lastly, we identified miRNAs that potentially can regulate the expression of MED subunits.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/patologia , Feminino , Humanos , Complexo Mediador/genética , MicroRNAs/genética , RNA Polimerase II/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo
15.
Genes (Basel) ; 13(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35205301

RESUMO

The initiator element is a core promoter element encompassing the transcription start site, which is found in yeast, Drosophila, and human promoters. This element is observed in TATA-less promoters. Several studies have defined transcription factor requirements and additional cofactors that are needed for transcription initiation of initiator-containing promoters. However, those studies have been performed with additional core promoters in addition to the initiator. In this work, we have defined the pathway of preinitiation complex formation on the fission yeast nmt1 gene promoter, which contains a functional initiator with striking similarity to the initiator of the human dihydrofolate reductase (hDHFR) gene and to the factor requirement for transcription initiation of the nmt1 gene promoter. The results show that the nmt1 gene promoter possesses an initiator encompassing the transcription start site, and several conserved base positions are required for initiator function. A preinitiation complex formation on the nmt1 initiator can be started by TBP/TFIIA or TBP/TFIIB, but not TBP alone, and afterwards follows the same pathway as preinitiation complex formation on TATA-containing promoters. Transcription initiation is dependent on the general transcription factors TBP, TFIIB, TFIIE, TFIIF, TFIIH, RNA polymerase II, Mediator, and a cofactor identified as transcription cofactor for initiator function (TCIF), which is a high-molecular-weight protein complex of around 500 kDa. However, the TAF subunits of TFIID were not required for the nmt1 initiator transcription, as far as we tested. We also demonstrate that other initiators of the nmt1/hDHFR family can be transcribed in fission yeast whole-cell extracts.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica
16.
Cells ; 11(22)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36429121

RESUMO

DNA polymerase ß plays a fundamental role in the life cycle of Trypanosoma cruzi since it participates in the kinetoplast DNA repair and replication. This enzyme can be found in two forms in cell extracts of T. cruzi epimastigotes form. The H form is a phosphorylated form of DNA polymerase ß, while the L form is not phosphorylated. The protein kinases which are able to in vivo phosphorylate DNA polymerase ß have not been identified yet. In this work, we purified the H form of this DNA polymerase and identified the phosphorylation sites. DNA polymerase ß is in vivo phosphorylated at several amino acid residues including Tyr35, Thr123, Thr137 and Ser286. Thr123 is phosphorylated by casein kinase 2 and Thr137 and Ser286 are phosphorylated by protein kinase C-like enzymes. Protein kinase C encoding genes were identified in T. cruzi, and those genes were cloned, expressed in bacteria and the recombinant protein was purified. It was found that T. cruzi possesses three different protein kinase C-like enzymes named TcPKC1, TcPKC2, and TcPKC3. Both TcPKC1 and TcPKC2 were able to in vitro phosphorylate recombinant DNA polymerase ß, and in addition, TcPKC1 gets auto phosphorylated. Those proteins contain several regulatory domains at the N-terminus, which are predicted to bind phosphoinositols, and TcPKC1 contains a lipocalin domain at the C-terminus that might be able to bind free fatty acids. Tyr35 is phosphorylated by an unidentified protein kinase and considering that the T. cruzi genome does not contain Tyr kinase encoding genes, it is probable that Tyr35 could be phosphorylated by a dual protein kinase. Wee1 is a eukaryotic dual protein kinase involved in cell cycle regulation. We identified a Wee1 homolog in T. cruzi and the recombinant kinase was assayed using DNA polymerase ß as a substrate. T. cruzi Wee1 was able to in vitro phosphorylate recombinant DNA polymerase ß, although we were not able to demonstrate specific phosphorylation on Tyr35. Those results indicate that there exists a cell signaling pathway involving PKC-like kinases in T. cruzi.


Assuntos
Doença de Chagas , DNA Polimerase beta , Trypanosoma cruzi , Humanos , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Caseína Quinase II/metabolismo , Proteína Quinase C/metabolismo
17.
Biochem Biophys Res Commun ; 409(3): 539-43, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21600873

RESUMO

Ski is a negative regulator of the transforming growth factor-ß and other signalling pathways. The absence of SKI in mouse fibroblasts leads to chromosome segregation defects and genomic instability, suggesting a role for Ski during mitosis. At this stage, Ski is phosphorylated but to date little is known about the kinases involved in this process. Here, we show that Aurora A kinase is able to phosphorylate Ski in vitro. In vivo, Aurora A and Ski co-localized at the centrosomes and co-immunoprecipitated. Conversely, a C-terminal truncation mutant of Ski (SkiΔ491-728) lacking a coiled-coil domain, displayed decreased centrosomal localization. This mutant no longer co-immunoprecipitated with Aurora-A in vivo, but was still phosphorylated in vitro, indicating that the Ski-Aurora A interaction takes place at the centrosomes. These data identify Ski as a novel target of Aurora A and contribute to an understanding of the role of these proteins in the mitotic process.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Aurora Quinase A , Aurora Quinases , Linhagem Celular Tumoral , Centrômero/metabolismo , Centrossomo/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Mutação , Fosforilação , Proteínas Proto-Oncogênicas/genética
18.
Front Cell Infect Microbiol ; 11: 670564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422676

RESUMO

Trypanosomatids are a group of primitive unicellular eukaryotes that can cause diseases in plants, insects, animals, and humans. Kinetoplast genome integrity is key to trypanosomatid cell survival and viability. Kinetoplast DNA (kDNA) is usually under attack by reactive oxygen and nitric species (ROS and RNS), damaging the DNA, and the cells must remove and repair those oxidatively generated lesions in order to survive and proliferate. Base excision repair (BER) is a well-conserved pathway for DNA repair after base damage, single-base loss, and single-strand breaks, which can arise from ROS, RSN, environmental genotoxic agents, and UV irradiation. A powerful BER system has been described in the T. cruzi kinetoplast and it is mainly carried out by DNA polymerase ß (pol ß) and DNA polymerase ß-PAK (pol ß-PAK), which are kinetoplast-located in T. cruzi as well as in other trypanosomatids. Both pol ß and pol ß-PAK belong to the X-family of DNA polymerases (pol X family), perform BER in trypanosomatids, and display intrinsic 5-deoxyribose phosphate (dRP) lyase and DNA polymerase activities. However, only Pol ß-PAK is able to carry out trans-lesion synthesis (TLS) across 8oxoG lesions. T. cruzi cells overexpressing pol ß are more resistant to ROS and are also more efficient to repair 8oxoG compared to control cells. Pol ß seems to play a role in kDNA replication, since it associates with kinetoplast antipodal sites in those development stages in trypanosomatids which are competent for cell replication. ROS treatment of cells induces the overexpression of pol ß, indicating that plays a role in kDNA repair. In this review, we will summarize the main features of trypanosomatid minicircle kDNA replication and the biochemical characteristics of pol ß-like enzymes and their involvement in BER and kDNA replication. We also summarize key structural features of trypanosomatid pol ß compared to their mammalian (human) counterpart.


Assuntos
DNA Polimerase beta , Animais , DNA , Dano ao DNA , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Reparo do DNA , Replicação do DNA , Humanos
19.
PLoS Negl Trop Dis ; 15(7): e0009588, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260580

RESUMO

The unicellular protozoan Trypanosoma cruzi is the causing agent of Chagas disease which affects several millions of people around the world. The components of the cell signaling pathways in this parasite have not been well studied yet, although its genome can encode several components able to transduce the signals, such as protein kinases and phosphatases. In a previous work we have found that DNA polymerase ß (Tcpolß) can be phosphorylated in vivo and this modification activates the synthesis activity of the enzyme. Tcpolß is kinetoplast-located and is a key enzyme in the DNA base excision repair (BER) system. The polypeptide possesses several consensus phosphorylation sites for several protein kinases, however, a direct phosphorylation of those sites by specific kinases has not been reported yet. Tcpolß has consensus phosphorylation sites for casein kinase 1 (CK1), casein kinase 2 (CK2) and aurora kinase (AUK). Genes encoding orthologues of those kinases exist in T. cruzi and we were able to identify the genes and to express them to investigate whether or no Tcpolß could be a substrate for in vitro phosphorylation by those kinases. Both CK1 and TcAUK1 have auto-phosphorylation activities and they are able to phosphorylate Tcpolß. CK2 cannot perform auto-phosphorylation of its subunits, however, it was able to phosphorylate Tcpolß. Pharmacological inhibitors used to inhibit the homologous mammalian kinases can also inhibit the activity of T. cruzi kinases, although, at higher concentrations. The phosphorylation events carried out by those kinases can potentiate the DNA polymerase activity of Tcpolß and it is discussed the role of the phosphorylation on the DNA polymerase and lyase activities of Tcpolß. Taken altogether, indicates that CK1, CK2 and TcAUK1 can play an in vivo role regulating the function of Tcpolß.


Assuntos
DNA Polimerase beta/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , DNA Polimerase beta/genética , Regulação Enzimológica da Expressão Gênica , Fosforilação , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética
20.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202043

RESUMO

Chagas disease is a neglected tropical disease caused by the flagellated protozoa Trypanosome cruzi. This illness affects to almost 8-12 million people worldwide, however, is endemic to Latin American countries. It is mainly vectorially transmitted by insects of the Triatominae family, although other transmission routes also exist. T. cruzi-infected cardiomyocytes at the chronic stage of the disease display severe mitochondrial dysfunction and high ROS production, leading to chronic myocardial inflammation and heart failure. Under cellular stress, cells usually can launch mitochondrial biogenesis in order to restore energy loss. Key players to begin mitochondrial biogenesis are the PGC-1 (PPARγ coactivator 1) family of transcriptional coactivators, which are activated in response to several stimuli, either by deacetylation or dephosphorylation, and in turn can serve as coactivators for the NRF (nuclear respiratory factor) family of transcription factors. The NRF family of transcriptional activators, namely NRF1 and NRF2, can activate gene expression of oxidative phosphorylation (OXPHOS) components, mitochondrial transcriptional factor (Tfam) and nuclear encoded mitochondrial proteins, leading to mitochondrial biogenesis. On the other hand, NRF2 can activate gene expression of antioxidant enzymes in response to antioxidants, oxidants, electrophile compounds, pharmaceutical and dietary compounds in a mechanism dependent on KEAP1 (Kelch-like ECH-associated protein 1). Since a definitive cure to treat Chagas disease has not been found yet; the use of antioxidants a co-adjuvant therapy has been proposed in an effort to improve mitochondrial functions, biogenesis, and the antioxidant defenses response. Those antioxidants could activate different pathways to begin mitochondrial biogenesis and/or cytoprotective antioxidant defenses. In this review we discuss the main mechanisms of mitochondrial biogenesis and the NRF2-KEAP1 activation pathway. We also reviewed the antioxidants used as co-adjuvant therapy to treat experimental Chagas disease and their action mechanisms and finish with the discussion of antioxidant therapy used in Chagas disease patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa