Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38005432

RESUMO

Fire outbreaks continue to cause damage despite the improvements in fire-detection tools and algorithms. As the human population and global warming continue to rise, fires have emerged as a significant worldwide issue. These factors may contribute to the greenhouse effect and climatic changes, among other detrimental consequences. It is still challenging to implement a well-performing and optimized approach, which is sufficiently accurate, and has tractable complexity and a low false alarm rate. A small fire and the identification of a fire from a long distance are also challenges in previously proposed techniques. In this study, we propose a novel hybrid model, called IS-CNN-LSTM, based on convolutional neural networks (CNN) to detect and analyze fire intensity. A total of 21 convolutional layers, 24 rectified linear unit (ReLU) layers, 6 pooling layers, 3 fully connected layers, 2 dropout layers, and a softmax layer are included in the proposed 57-layer CNN model. Our proposed model performs instance segmentation to distinguish between fire and non-fire events. To reduce the intricacy of the proposed model, we also propose a key-frame extraction algorithm. The proposed model uses Internet of Things (IoT) devices to alert the relevant person by calculating the severity of the fire. Our proposed model is tested on a publicly available dataset having fire and normal videos. The achievement of 95.25% classification accuracy, 0.09% false positive rate (FPR), 0.65% false negative rate (FNR), and a prediction time of 0.08 s validates the proposed system.

2.
Diagnostics (Basel) ; 14(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893707

RESUMO

This study, utilizing high-throughput technologies and Machine Learning (ML), has identified gene biomarkers and molecular signatures in Inflammatory Bowel Disease (IBD). We could identify significant upregulated or downregulated genes in IBD patients by comparing gene expression levels in colonic specimens from 172 IBD patients and 22 healthy individuals using the GSE75214 microarray dataset. Our ML techniques and feature selection methods revealed six Differentially Expressed Gene (DEG) biomarkers (VWF, IL1RL1, DENND2B, MMP14, NAAA, and PANK1) with strong diagnostic potential for IBD. The Random Forest (RF) model demonstrated exceptional performance, with accuracy, F1-score, and AUC values exceeding 0.98. Our findings were rigorously validated with independent datasets (GSE36807 and GSE10616), further bolstering their credibility and showing favorable performance metrics (accuracy: 0.841, F1-score: 0.734, AUC: 0.887). Our functional annotation and pathway enrichment analysis provided insights into crucial pathways associated with these dysregulated genes. DENND2B and PANK1 were identified as novel IBD biomarkers, advancing our understanding of the disease. The validation in independent cohorts enhances the reliability of these findings and underscores their potential for early detection and personalized treatment of IBD. Further exploration of these genes is necessary to fully comprehend their roles in IBD pathogenesis and develop improved diagnostic tools and therapies. This study significantly contributes to IBD research with valuable insights, potentially greatly enhancing patient care.

3.
Plants (Basel) ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475499

RESUMO

Our research focuses on addressing the challenge of crop diseases and pest infestations in agriculture by utilizing UAV technology for improved crop monitoring through unmanned aerial vehicles (UAVs) and enhancing the detection and classification of agricultural pests. Traditional approaches often require arduous manual feature extraction or computationally demanding deep learning (DL) techniques. To address this, we introduce an optimized model tailored specifically for UAV-based applications. Our alterations to the YOLOv5s model, which include advanced attention modules, expanded cross-stage partial network (CSP) modules, and refined multiscale feature extraction mechanisms, enable precise pest detection and classification. Inspired by the efficiency and versatility of UAVs, our study strives to revolutionize pest management in sustainable agriculture while also detecting and preventing crop diseases. We conducted rigorous testing on a medium-scale dataset, identifying five agricultural pests, namely ants, grasshoppers, palm weevils, shield bugs, and wasps. Our comprehensive experimental analysis showcases superior performance compared to various YOLOv5 model versions. The proposed model obtained higher performance, with an average precision of 96.0%, an average recall of 93.0%, and a mean average precision (mAP) of 95.0%. Furthermore, the inherent capabilities of UAVs, combined with the YOLOv5s model tested here, could offer a reliable solution for real-time pest detection, demonstrating significant potential to optimize and improve agricultural production within a drone-centric ecosystem.

4.
Sci Rep ; 14(1): 8180, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589431

RESUMO

N6-methyladenosine (6 mA) is the most common internal modification in eukaryotic mRNA. Mass spectrometry and site-directed mutagenesis, two of the most common conventional approaches, have been shown to be laborious and challenging. In recent years, there has been a rising interest in analyzing RNA sequences to systematically investigate mutated locations. Using novel methods for feature development, the current work aimed to identify 6 mA locations in RNA sequences. Following the generation of these novel features, they were used to train an ensemble of models using methods such as stacking, boosting, and bagging. The trained ensemble models were assessed using an independent test set and k-fold cross validation. When compared to baseline predictors, the suggested model performed better and showed improved ratings across the board for key measures of accuracy.


Assuntos
Adenosina , RNA , RNA/genética , RNA Mensageiro , Adenosina/genética , Projetos de Pesquisa
5.
J Healthc Eng ; 2023: 4537253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483301

RESUMO

Exudate, an asymptomatic yellow deposit on retina, is among the primary characteristics of background diabetic retinopathy. Background diabetic retinopathy is a retinopathy related to high blood sugar levels which slowly affects all the organs of the body. The early detection of exudates aids doctors in screening the patients suffering from background diabetic retinopathy. A computer-aided method proposed in the present work detects and then segments the exudates in the images of retina acquired using a digital fundus camera by (i) gradient method to trace the contour of exudates, (ii) marking the connected candidate pixels to remove false exudates pixels, and (iii) linking the edge pixels for the boundary extraction of exudates. The method is tested on 1307 retinal fundus images with varying characteristics. Six hundred and forty-nine images were acquired from hospital and the remaining 658 from open-source benchmark databases, namely, STARE, DRIVE MESSIDOR, DiaretDB1, and e-Ophtha. The exudates segmentation method proposed in this research work results in the retinal fundus image-based (i) accuracy of 98.04%, (ii) sensitivity of 95.345%, and (iii) specificity of 98.63%. The segmentation results for a number of exudates-based evaluations depict the average (i) accuracy of 95.68%, (ii) sensitivity of 93.44%, and (iii) specificity of 97.22%. The substantial combined performance at image and exudates-based evaluations proves the contribution of the proposed method in mass screening as well as treatment process of background diabetic retinopathy.


Assuntos
Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Retina/diagnóstico por imagem , Fundo de Olho , Programas de Rastreamento , Algoritmos
6.
J Mol Graph Model ; 110: 108074, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34768228

RESUMO

Methylation is a biochemical process involved in nearly all of the human body functions. Glutamine is considered an indispensable amino acid that is susceptible to methylation via post-translational modification (PTM). Modern research has proved that methylation plays a momentous role in the progression of most types of cancers. Therefore, there is a need for an effective method to predict glutamine sites vulnerable to methylation accurately and inexpensively. The motive of this study is the formulation of an accurate method that could predict such sites with high accuracy. Various computationally intelligent classifiers were employed for their formulation and evaluation. Rigorous validations prove that deep learning performs best as compared to other classifiers. The accuracy (ACC) and the area under the receiver operating curve (AUC) obtained by 10-fold cross-validation was 0.962 and 0.981, while with the jackknife testing, it was 0.968 and 0.980, respectively. From these results, it is concluded that the proposed methodology works sufficiently well for the prediction of methyl-glutamine sites. The webserver's code, developed for the prediction of methyl-glutamine sites, is freely available at https://github.com/s20181080001/WebServer.git. The code can easily be set up by any intermediate-level Python user.


Assuntos
Glutamina , Processamento de Proteína Pós-Traducional , Humanos , Metilação
7.
Membranes (Basel) ; 12(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323738

RESUMO

Acetylation is the most important post-translation modification (PTM) in eukaryotes; it has manifold effects on the level of protein that transform an acetyl group from an acetyl coenzyme to a specific site on a polypeptide chain. Acetylation sites play many important roles, including regulating membrane protein functions and strongly affecting the membrane interaction of proteins and membrane remodeling. Because of these properties, its correct identification is essential to understand its mechanism in biological systems. As such, some traditional methods, such as mass spectrometry and site-directed mutagenesis, are used, but they are tedious and time-consuming. To overcome such limitations, many computer models are being developed to correctly identify their sequences from non-acetyl sequences, but they have poor efficiency in terms of accuracy, sensitivity, and specificity. This work proposes an efficient and accurate computational model for predicting Acetylation using machine learning approaches. The proposed model achieved an accuracy of 100 percent with the 10-fold cross-validation test based on the Random Forest classifier, along with a feature extraction approach using statistical moments. The model is also validated by the jackknife, self-consistency, and independent test, which achieved an accuracy of 100, 100, and 97, respectively, results far better as compared to the already existing models available in the literature.

8.
Sci Rep ; 11(1): 12281, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112883

RESUMO

Cancer is driven by distinctive sorts of changes and basic variations in genes. Recognizing cancer driver genes is basic for accurate oncological analysis. Numerous methodologies to distinguish and identify drivers presently exist, but efficient tools to combine and optimize them on huge datasets are few. Most strategies for prioritizing transformations depend basically on frequency-based criteria. Strategies are required to dependably prioritize organically dynamic driver changes over inert passengers in high-throughput sequencing cancer information sets. This study proposes a model namely PCDG-Pred which works as a utility capable of distinguishing cancer driver and passenger attributes of genes based on sequencing data. Keeping in view the significance of the cancer driver genes an efficient method is proposed to identify the cancer driver genes. Further, various validation techniques are applied at different levels to establish the effectiveness of the model and to obtain metrics like accuracy, Mathew's correlation coefficient, sensitivity, and specificity. The results of the study strongly indicate that the proposed strategy provides a fundamental functional advantage over other existing strategies for cancer driver genes identification. Subsequently, careful experiments exhibit that the accuracy metrics obtained for self-consistency, independent set, and cross-validation tests are 91.08%., 87.26%, and 92.48% respectively.


Assuntos
Biomarcadores Tumorais , Biologia Computacional/métodos , Genômica/métodos , Aprendizado de Máquina , Neoplasias/genética , Oncogenes , Algoritmos , Bases de Dados Genéticas , Humanos , Curva ROC , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte , Navegador
9.
Arch Comput Methods Eng ; 28(4): 2645-2653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32837183

RESUMO

Covid-19 is one of the biggest health challenges that the world has ever faced. Public health policy makers need the reliable prediction of the confirmed cases in future to plan medical facilities. Machine learning methods learn from the historical data and make predictions about the events. Machine learning methods have been used to predict the number of confirmed cases of Covid-19. In this paper, we present a detailed review of these research papers. We present a taxonomy that groups them in four categories. We further present the challenges in this field. We provide suggestions to the machine learning practitioners to improve the performance of machine learning methods for the prediction of confirmed cases of Covid-19.

10.
PLoS One ; 14(11): e0223993, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31751380

RESUMO

Among different post-translational modifications (PTMs), one of the most important one is the lysine crotonylation in proteins. Its importance cannot be undermined related to different diseases and essential biological practice. The key step for finding the hidden mechanisms of crotonylation along with their occurrence sites is to completely apprehend the mechanism behind this biological process. In previously reported studies, researchers have used different techniques, like position weighted matrix (PWM), support vector machine (SVM), k nearest neighbors (KNN), and many others. However, the maximum prediction accuracy achieved was not such high. To address this, herein, we propose an improved predictor for lysine crotonylation sites named iCrotoK-PseAAC, in which we have incorporated various position and composition relative features along with statistical moments into PseAAC. The results of self-consistency testing were 100% accurate, while the 10-fold cross validation gave 99.0% accuracy. Based on the validation and comparison of model, it is concluded that the iCrotoK-PseAAC is more accurate than the previously proposed models.


Assuntos
Biologia Computacional/métodos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Internet , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa