Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(27): 278003, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061419

RESUMO

The prediction of flow profiles of slowly sheared granular materials is a major geophysical and industrial challenge. Understanding the role of gravity is particularly important for future planetary exploration in varying gravitational environments. Using the principle of minimization of energy dissipation, and combining experiments and variational analysis, we disentangle the contributions of the gravitational acceleration, confining pressure, and layer thickness on shear strain localization induced by moving fault boundaries at the bottom of a granular layer. The flow profile is independent of the gravity for geometries with a free top surface. However, under a confining pressure or if the sheared layer withstands the weight of the upper layers, increasing gravity promotes the transition from closed shear zones buried in the bulk to open ones that intersect the top surface. We show that the center position and width of the shear zone and the axial angular velocity at the top surface follow universal scaling laws when properly scaled by the gravity, applied pressure, and layer thickness. Our finding that the flow profiles lie on a universal master curve opens the possibility to predict the quasistatic shear flow of granular materials in varying gravitational environments.

2.
Soft Matter ; 17(7): 1814-1820, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33399618

RESUMO

Stress transmission in realistic granular media often occurs under external load and in the presence of boundary slip. We investigate shear localization in a split-bottom Couette cell with smooth walls subject to a confining pressure experimentally and by means of numerical simulations. We demonstrate how the characteristics of the shear zone, such as its center position and width, evolve as the confining pressure and wall slip modify the local effective friction coefficient of the material. For increasing applied pressure, the shear zone evolves toward the center of the cylinder and grows wider and the angular velocity reduces compared to the driving rate of the bottom disk. Moreover, the presence of slip promotes the transition from open shear zones at the top surface to closed shear zones inside the bulk. We also systematically vary the ratio of the effective friction near the bottom plate and in the bulk in simulations and observe the resulting impact on the surface flow profile. Besides the boundary conditions and external load, material properties such as grain size are also known to influence the effective friction coefficient. However, our numerical results reveal that the center position and width of the shear zone are insignificantly affected by the choice of the grain size as far as it remains small compared to the radius of the rotating bottom disk.

3.
Phys Rev Lett ; 111(14): 148301, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138274

RESUMO

We report experiments on slow granular flows in a split-bottom Couette cell that show novel strain localization features. Nontrivial flow profiles have been observed which are shown to be the consequence of simultaneous formation of shear zones in the bulk and at the boundaries. The fluctuating band model based on a minimization principle can be fitted to the experiments over a large variation of morphology and filling height with one single fit parameter, the relative friction coefficient µ(rel) between wall and bulk. The possibility of multiple shear zone formation is controlled by µ(rel). Moreover, we observe that the symmetry of an initial state, with coexisting shear zones at both side walls, breaks spontaneously below a threshold value of the shear velocity. A dynamical transition between two asymmetric flow states happens over a characteristic time scale which depends on the shear strength.

4.
Sci Rep ; 10(1): 9240, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513992

RESUMO

In this paper, we introduce a non-invasive optical method, named Paraxial Self-Reference Interferometry (PSRI) for thickness measurement of liquid films. The method can be used for thin or thick layers (from µm to mm) of solids or liquids, with a high precision. The method is first applied to solid plates with known thickness and is verified to be accurate. Then we use it for the thickness measurement of liquid films in two experiments. The first experiment is spin coating and the second is dip coating. In both experiments, the results are in agreement with theoretical and experimental results of previous works. In the dip coating experiment, the Landau-Levich-Derjaguin law (LLD) is observed in low capillary numbers, and a deviation from this law due to gravity is seen in higher capillary numbers. The thinning due to the drainage is also observed and is consistent with theoretical predictions.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(6 Pt 2): 066306, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17280147

RESUMO

We present a combined experimental and numerical investigation of the coiling of a liquid "rope" falling on a solid surface, focusing on three little-explored aspects of the phenomenon: The time dependence of "inertio-gravitational" coiling, the systematic dependence of the radii of the coil and the rope on the experimental parameters, and the "secondary buckling" of the columnar structure generated by high-frequency coiling. Inertio-gravitational coiling is characterized by oscillations between states with different frequencies, and we present experimental observations of four distinct branches of such states in the frequency-fall height space. The transitions between coexisting states have no characteristic period, may take place with or without a change in the sense of rotation, and usually (but not always) occur via an intermediate "figure of eight" state. We present extensive laboratory measurements of the radii of the coil and of the rope within it, and show that they agree well with the predictions of a "slender-rope" numerical model. Finally, we use dimensional analysis to reveal a systematic variation of the critical column height for secondary buckling as a function of (dimensionless) flow rate and surface tension parameters.

6.
Langmuir ; 23(20): 10116-22, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17760464

RESUMO

We discuss here the nature of the Landau-Levich transition, that is, the dynamical transition that occurs when drawing a solid out of a bath of a liquid that partially wets this solid. Above a threshold velocity, a film is entrained by the solid. We measure the macroscopic contact angle between the liquid and the solid by different methods, and conclude that this angle might be discontinuous at the transition. We also present a model to understand this fact and the shape of the meniscus as drawing the solid.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa