Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Chemistry ; 27(7): 2543-2550, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196126

RESUMO

Carbonized polymer dots (CPDs), a peculiar type of carbon dots, show extremely high quantum yields, making them very attractive nanostructures for application in optics and biophotonics. The origin of the strong photoluminescence of CPDs resides in a complicated interplay of several radiative mechanisms. To understand the correlation between CPD processing and properties, the early stage formation of carbonized polymer dots has been studied. In the synthesis, citric acid monohydrate and 2-amino-2-(hydroxymethyl)propane-1,3-diol have been thermally degraded at 180 °C. The use of an oil bath instead of a more traditional hydrothermal reactor has allowed the CPD properties to be monitored at different reactions times. Transmission electron microscopy, time-resolved photoluminescence, nuclear magnetic resonance, infrared, and Raman spectroscopy have revealed the formation of polymeric species with amide and ester bonds. Quantum chemistry calculations have been employed to investigate the origin of CPD electronic transitions. At short reaction times, amorphous C-dots with 80 % quantum yield, have been obtained.

2.
Langmuir ; 37(17): 5348-5355, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878872

RESUMO

The fabrication of optically active heterostructures in the shape of mesostructured thin films is a highly challenging task. It requires an integrated process to allow in one-step incorporating the two-dimensional materials within the mesoporous ordered host without disrupting the pore organization. Hexagonal boron nitride (BN) nanosheets have been successfully introduced into titania mesoporous films using a template-assisted sol-gel synthesis and evaporation-induced self-assembly. Two types of BN sheets have been used, with and without defects, to investigate the role of defects in heterostructure properties. It has been found that the defects increase the ultraviolet radiation A (UVA) absorbance and enhance the photocatalytic response of the film. The BN sheets are optically transparent and do not exhibit any photocatalytic property but contribute to anatase crystallization via heterogeneous nucleation.

3.
J Environ Manage ; 278(Pt 1): 111519, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113395

RESUMO

With the increase of industrialization, there is an urgent need for developing technologies to detect and remove toxic pollutants from water bodies. The pollutants are often released to the environment due to the consumption of raw materials that are necessary for the production of technological goods (such as chemical and pharmaceutical compounds, metals, and alloys or foods). Amongst all the remediation techniques, adsorption is considered as one of the preferred techniques, due to its fast and efficient removal of contaminants. Novel materials, which are engineered for selective and responsive water remediation, have also recently revealed a strong potential in the detection of pollutants. Here, current trends of silica-graphene (SG) porous composites for the removal of oils, organic solvents, heavy metals, and dyes are reviewed in detail. Insights on the modifications of composites to enhance their sorption performance have been highlighted. In addition, the detection of pollutants using porous SG nanocomposites is also critically reviewed. Overall, SG composites reveal a strong potential as nanostructure materials with improved efficiency for environmental-based applications.


Assuntos
Recuperação e Remediação Ambiental , Grafite , Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Porosidade , Dióxido de Silício
4.
J Phys Chem A ; 124(1): 197-203, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31829593

RESUMO

Understanding the luminescence of carbon dots is a highly challenging task because of the complex reactions involved in the synthesis process. Several by-products form at different reaction stages and become possible sources of emission. Citrazinic acid and its derivatives, in particular, have been identified as intermediates that give rise to blue fluorescence. Full comprehension of the optical properties of citrazinic acid itself is, however, still lacking. In particular, citrazinic acid has the property of forming different tautomers and aggregates such as dimers. However, the nature of these chemical species and the correlation with their relative optical properties have been only partially explored. In the present work, we have used a combination of spectroscopic techniques, UV-visible and fluorescence spectroscopy, time-resolved photoluminescence and computational simulation, to study the different species which citrazinic acid forms in water as a function of CZA molarity. A monomer-to-dimer transformation and a hypsochromic shift are observed with concentration. The monomer is in the keto structure and does not form other tautomers while the dimers are fluorescent J-type aggregates. The formation of aggregates strongly modulates the optical properties of citrazinic acid.

5.
Molecules ; 26(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375521

RESUMO

Nowadays, the mislabeling of honey floral origin is a very common fraudulent practice. The scientific community is intensifying its efforts to provide the bodies responsible for controlling the authenticity of honey with fast and reliable analytical protocols. In this study, the classification of various monofloral honeys from Sardinia, Italy, was attempted by means of ATR-FTIR spectroscopy and random forest. Four different floral origins were considered: strawberry-tree (Arbutus Unedo L.), asphodel (Asphodelus microcarpus), thistle (Galactites tormentosa), and eucalyptus (Eucalyptus calmadulensis). Training a random forest on the infrared spectra allowed achieving an average accuracy of 87% in a cross-validation setting. The identification of the significant wavenumbers revealed the important role played by the region 1540-1175 cm-1 and, to a lesser extent, the region 1700-1600 cm-1. The contribution of the phenolic fraction was identified as the main responsible for this observation.


Assuntos
Algoritmos , Flores/química , Mel/análise , Itália , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Chemistry ; 25(51): 11963-11974, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31254368

RESUMO

Thermal decomposition of citric acid is one of the most common synthesis methods for fluorescent carbon dots; the reaction pathway is, however, quite complex and the details are still far from being understood. For instance, several intermediates form during the process and they also give rise to fluorescent species. In the present work, the formation of fluorescent C-dots from citric acid has been studied as a function of reaction time by coupling infrared analysis, X-ray photoelectron spectroscopy, liquid chromatography/mass spectroscopy (LC/MS) with the change of the optical properties, absorption and emission. The reaction intermediates, which have been identified at different stages, produce two main emissive species, in the green and blue, as also indicated by the decay time analysis. C-dots formed from the intermediates have also been synthesised by thermal decomposition, which gave an emission maximum around 450 nm. The citric acid C-dots in water show short temporal stability, but their functionalisation with 3-aminopropyltriethoxysilane reduces the quenching. The understanding of the citric acid thermal decomposition reaction is expected to improve the control and reproducibility of C-dots synthesis.

7.
Chem Rec ; 18(7-8): 1192-1202, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29537725

RESUMO

Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum.

8.
J Synchrotron Radiat ; 23(1): 267-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698073

RESUMO

Hard X-rays, deriving from a synchrotron light source, have been used as an effective tool for processing hybrid organic-inorganic films and thick coatings up to several micrometres. These coatings could be directly modified, in terms of composition and properties, by controlled exposure to X-rays. The physico-chemical properties of the coatings, such as hardness, refractive index and fluorescence, can be properly tuned using the interaction of hard X-rays with the sol-gel hybrid films. The changes in the microstructure have been correlated especially with the modification of the optical and the mechanical properties. A relationship between the degradation rate of the organic groups and the rise of fluorescence from the hybrid material has been observed; nanoindentation analysis of the coatings as a function of the X-ray doses has shown a not linear dependence between thickness and film hardness.

9.
J Synchrotron Radiat ; 22(1): 165-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537604

RESUMO

An innovative approach towards the physico-chemical tailoring of zinc oxide thin films is reported. The films have been deposited by liquid phase using the sol-gel method and then exposed to hard X-rays, provided by a synchrotron storage ring, for lithography. The use of surfactant and chelating agents in the sol allows easy-to-pattern films made by an organic-inorganic matrix to be deposited. The exposure to hard X-rays strongly affects the nucleation and growth of crystalline ZnO, triggering the formation of two intermediate phases before obtaining a wurtzite-like structure. At the same time, X-ray lithography allows for a fast patterning of the coatings enabling microfabrication for sensing and arrays technology.

10.
Chemphyschem ; 16(9): 1933-9, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-25891296

RESUMO

The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition.

11.
Phys Chem Chem Phys ; 17(16): 10679-86, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25809951

RESUMO

A new type of mesostructured hybrid organic-inorganic film has been synthesised by evaporation-induced self-assembly using 3-glycidoxypropyltrimethoxysilane as the precursor and a tri-block copolymer, Pluronic F127, as the template. The chemistry has been tuned to form bridged polysilsesquioxanes that self-organise into ordered lamellar structures. Controlled aging under highly basic conditions, which has been monitored by Raman and infrared spectroscopy, has been used to obtain the layered ordered hybrid structures in the precursor sol. The pH of the sol has been adjusted to form the micelles that act as templates during solvent evaporation. The self-assembly of the system has been studied in situ by small and wide angle X-ray scattering using a synchrotron light source, which has confirmed both the formation of hybrid layered structures and the long-range organization of the mesophase in the hybrid films. The present approach allows ordering the hybrid film on two different length scales; at the end of film processing, hybrid crystals are incorporated into the pore walls and the micelles are arranged within the films with long range order.

12.
Phys Chem Chem Phys ; 16(47): 25809-18, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25278085

RESUMO

Silica mesoporous nanocomposite films containing graphene nanosheets and gold nanoparticles have been prepared via a one-pot synthesis using silicon tetrachloride, gold(III) chloride tetrahydrate, a 1-N-vinyl-2-pyrrolidone dispersion of exfoliated graphene and Pluronic F127 as a structuring agent. The composite films have shown graphene-mediated surface-enhanced Raman scattering (G-SERS). Graphene has been introduced as dispersed bilayer sheets while gold has been thermally reduced in situ to form nanoparticles of around 6 nm which preferentially nucleate on the surface of the graphene nanosheets. The presence of graphene and gold nanoparticles does not interfere with the self-assembly process and the formation of silica mesoporous films ordered as 2D hexagonal structures. The material has shown a remarkable analytical enhancement factor ranging from 80 up to 136 using rhodamine 6G as a Raman probe. The films have been characterised by grazing incidence X-ray diffraction, FTIR and UV-vis spectroscopy studies; transmission electron microscopy and spectroscopic ellipsometry have been used to study the morphology, thickness and porosities of the samples. Raman spectroscopy has been employed to characterise the graphene nanosheets embedded into the mesoporous films and the enhanced Raman scattering.


Assuntos
Grafite/química , Dióxido de Silício/química , Tamanho da Partícula , Porosidade , Análise Espectral Raman , Propriedades de Superfície
13.
Chem Soc Rev ; 42(9): 4198-216, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23396534

RESUMO

In this review we present a short overview of the main fields of application of mesoporous ordered films obtained via templating self-assembly. These materials, because of their very special properties such as high surface area, ordered porosity, versatile functionalization of the pore surface, have been widely used for developing advanced functional applications. Mesoporous ordered films have also shown a high capability of integration in current material processing technologies also taking advantage of the high flexibility of the synthesis. A surprisingly large variety of devices and applications have been developed so far which ranges from sensors to supercapacitors and biodevices. All these applications have in common the exploitation of ordered porosity on the mesoscale and in general a strong dependence on pore topology, the nature of the pore surface and pore accessibility has been demonstrated for most of the cases. Even if a high number of examples of applications have been reported still many more are expected to come in the near future.

14.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110990

RESUMO

The design of functional coatings for touchscreens and haptic interfaces is of paramount importance for smartphones, tablets, and computers. Among the functional properties, the ability to suppress or eliminate fingerprints from specific surfaces is one of the most critical. We produced photoactivated anti-fingerprint coatings by embedding 2D-SnSe2 nanoflakes in ordered mesoporous titania thin films. The SnSe2 nanostructures were produced by solvent-assisted sonication employing 1-Methyl-2-pyrrolidinone. The combination of SnSe2 and nanocrystalline anatase titania enables the formation of photoactivated heterostructures with an enhanced ability to remove fingerprints from their surface. These results were achieved through careful design of the heterostructure and controlled processing of the films by liquid phase deposition. The self-assembly process is unaffected by the addition of SnSe2, and the titania mesoporous films keep their three-dimensional pore organization. The coating layers show high optical transparency and a homogeneous distribution of SnSe2 within the matrix. An evaluation of photocatalytic activity was performed by observing the degradation of stearic acid and Rhodamine B layers deposited on the photoactive films as a function of radiation exposure time. FTIR and UV-Vis spectroscopies were used for the photodegradation tests. Additionally, infrared imaging was employed to assess the anti-fingerprinting property. The photodegradation process, following pseudo-first-order kinetics, shows a tremendous improvement over bare mesoporous titania films. Furthermore, exposure of the films to sunlight and UV light completely removes the fingerprints, opening the route to several self-cleaning applications.

15.
Nanomaterials (Basel) ; 13(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132987

RESUMO

The emergence of SARS-CoV-2 variants requires close monitoring to prevent the reoccurrence of a new pandemic in the near future. The Omicron variant, in particular, is one of the fastest-spreading viruses, showing a high ability to infect people and evade neutralization by antibodies elicited upon infection or vaccination. Therefore, the search for broad-spectrum antivirals that can inhibit the infectious capacity of SARS-CoV-2 is still the focus of intense research. In the present work, hyperbranched poly-L-lysine nanopolymers, which have shown an excellent ability to block the original strain of SARS-CoV-2 infection, were modified with L-arginine. A thermal reaction at 240 °C catalyzed by boric acid yielded Lys-Arg hyperbranched nanopolymers. The ability of these nanopolymers to inhibit viral replication were assessed for the original, Delta, and Omicron strains of SARS-CoV-2 together with their cytotoxicity. A reliable indication of the safety profile and effectiveness of the various polymeric compositions in inhibiting or suppressing viral infection was obtained by the evaluation of the therapeutic index in an in vitro prevention model. The hyperbranched L-arginine-modified nanopolymers exhibited a twelve-fold greater therapeutic index when tested with the original strain. The nanopolymers could also effectively limit the replication of the Omicron strain in a cell culture.

16.
J Synchrotron Radiat ; 19(Pt 4): 586-90, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22713894

RESUMO

The protection of organic and hybrid organic-inorganic materials from X-ray damage is a fundamental technological issue for broadening the range of applications of these materials. In the present article it is shown that doping hybrid films with fullerenes C(60) gives a significant reduction of damage upon exposure to hard X-rays generated by a synchrotron source. At low X-ray dose the fullerene molecules act as `radical scavengers', considerably reducing the degradation of organic species triggered by radical formation. At higher doses the gradual hydroxylation of the fullerenes converts C(60) into fullerol and a bleaching of the radical sinking properties is observed.

17.
J Synchrotron Radiat ; 19(Pt 6): 892-904, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23093747

RESUMO

Third-generation storage rings are modern facilities working with high currents and designed to host powerful radiation sources, like undulators and wigglers, and to deliver high-brilliance beams to users. Many experiments at high spatial resolution, such as spectromicroscopy at the nanometre scale and with high temporal resolution to investigate kinetics down to the picosecond regime, are now possible. The next frontier is certainly the combination of different methods in a unique set-up with the ultimate available spatial and temporal resolutions. In the last decade much synchrotron-based research has exploited the advantage of complementary information provided by time-resolved X-ray techniques and optical methods in the UV/Vis and IR domains. New time-resolved and concurrent approaches are necessary to characterize complex systems where physical-chemical phenomena occur under the same experimental conditions, for example to detect kinetic intermediates via complementary but independent observations. In this contribution we present scientific cases from original works and literature reviews to support the proposed IR/X-ray simultaneous approach, with both probes exploiting synchrotron radiation sources. In addition, simple experimental layouts that may take advantage of the high brilliance and the wide spectral distribution of the synchrotron radiation emission will be given for specific researches or applications to investigate dynamic processes and non-equilibrium phenomena occurring in many condensed matter and biological systems, of great interest for both fundamental research and technological applications.

18.
Langmuir ; 28(50): 17477-93, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23214421

RESUMO

The mechanisms of formation of organically modified (phenyl, vinyl, and methyl) silica materials with cubic Pm3n and hexagonal p6m periodic mesostructures obtained in one step in the presence of the cetyltrimethylammonium bromide (CTA(+)B) surfactant are reported in this study. Understanding the way these complex materials form is difficult but undoubtedly necessary for controlling the material structure and its properties because of the combined presence of surface organic groups and large surface areas. Here, the mechanism of formation is clarified on the basis of the modeling of time-resolved in situ small angle X-ray scattering (SAXS) experiments, with a specific focus on the micelle evolution during material formation. Their fast self-assembly is followed for the first time with a quick temporal resolution of a few seconds using a third-generation synchrotron radiation source. To better understand the behavior of the complex organic-containing mesostructure, we perform a comparative study with the corresponding organo-free, isostructural materials obtained from three different surfactants (CTA(+), CTEA(+), and CTPA(+)) having a constant chain length (C(16)) and an increasing polar head volume (met-, et-, and prop-). Numerical modeling of SAXS data was crucial to highlighting a systematic sphere-to-rod micellar transition, otherwise undetected, before the formation of the 2D hexagonal phase in both organo-free and organo-containing systems. Then, two different pathways were found in the formation of the cubic Pm3n mesostructure: either an ordering transition from concentrated flocs of spherical micelles (from CTEA(+) or CTPA(+)) for pure TEOS systems or a structural transformation from an intermediate 2D hexagonal mesophase in organosilane systems (from CTA(+)). Combining the comparison between organo-free and organo-containing systems with numerical modeling, we find that the hexagonal-to-cubic phase transition in the organically modified materials seems to be strongly influenced not only by the obvious presence of the organic group but also by the quicker and more massive condensation kinetics of silicate oligomers on the CTA(+) micellar surface. Finally, quite unexpectedly, we find a wormlike-to-sphere micellar transition in the CTPA(+) system.

19.
Nanomaterials (Basel) ; 12(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35407192

RESUMO

Heterostructures formed by anatase nanotitania and bidimensional semiconducting materials are expected to become the next-generation photocatalytic materials with an extended operating range and higher performances. The capability of fabricating optically transparent photocatalytic thin films is also a highly demanded technological issue, and increasing the performances of such devices would significantly impact several applications, from self-cleaning surfaces to photovoltaic systems. To improve the performances of such devices, WS2/TiO2 heterostructures obtained by incorporating two-dimensional transition metal dichalcogenides layers into titania mesoporous ordered thin films have been fabricated. The self-assembly process has been carefully controlled to avoid disruption of the order during film fabrication. WS2 nanosheets of different sizes have been exfoliated by sonication and incorporated in the mesoporous films via one-pot processing. The WS2 nanosheets result as well-dispersed within the titania anatase mesoporous film that retains a mesoporous ordered structure. An enhanced photocatalytic response due to an interparticle electron transfer effect has been observed. The structural characterization of the heterostructure has revealed a tight interplay between the matrix and nanosheets rather than a simple additive co-catalyst effect.

20.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407731

RESUMO

Bioimaging supported by nanoparticles requires low cost, highly emissive and photostable systems with low cytotoxicity. Carbon dots (C-dots) offer a possible solution, even if controlling their properties is not always straightforward, not to mention their potentially simple synthesis and the fact that they do not exhibit long-term photostability in general. In the present work, we synthesized two C-dots starting from citric acid and tris (hydroxymethyl)-aminomethane (tris) or arginine methyl ester dihydrochloride. Cellular uptake and bioimaging were tested in vitro using murine neuroblastoma and ovine fibroblast cells. The C-dots are highly biocompatible, and after 24 h of incubation with the cells, 100% viability was still observed. Furthermore, the C-dots synthesized using tris have an average dimension of 2 nm, a quantum yield of 37%, high photostability and a zeta potential (ζ) around -12 mV. These properties favor cellular uptake without damaging cells and allow for very effective bioimaging.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa