Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Radiol ; 28(4): 809-814, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33738658

RESUMO

Cocaine, heroin, methamphetamine, and hashish are the primary drugs transported by a body packer, who swallows such packages. A body pusher or stuffer transports drug packages in rectum or vagina. Plain radiography is the primary imaging modality used in the evaluation of concealed drugs and has sensitivity of 85-90%. The imaging features include well-defined opacities in the bowel with crescents of air near ovoid opacities. The imaging signs include double condom sign, halo sign, parallelism sign, and tic tac sign. A low-dose CT is an efficient noninvasive and accurate technique of locating packages internally for all types of concealment.


Assuntos
Transporte Intracorporal de Contrabando , Cocaína , Corpos Estranhos , Feminino , Heroína , Humanos , Reto
2.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617259

RESUMO

Cancer development is characterized by chromosomal instability, manifesting in frequent occurrences of different genomic alteration mechanisms ranging in extent and impact. Mathematical modeling can help evaluate the role of each mutational process during tumor progression, however existing frameworks can only capture certain aspects of chromosomal instability (CIN). We present CINner, a mathematical framework for modeling genomic diversity and selection during tumor evolution. The main advantage of CINner is its flexibility to incorporate many genomic events that directly impact cellular fitness, from driver gene mutations to copy number alterations (CNAs), including focal amplifications and deletions, missegregations and whole-genome duplication (WGD). We apply CINner to find chromosome-arm selection parameters that drive tumorigenesis in the absence of WGD in chromosomally stable cancer types. We found that the selection parameters predict WGD prevalence among different chromosomally unstable tumors, hinting that the selective advantage of WGD cells hinges on their tolerance for aneuploidy and escape from nullisomy. Direct application of CINner to model the WGD proportion and fraction of genome altered (FGA) further uncovers the increase in CNA probabilities associated with WGD in each cancer type. CINner can also be utilized to study chromosomally stable cancer types, by applying a selection model based on driver gene mutations and focal amplifications or deletions. Finally, we used CINner to analyze the impact of CNA probabilities, chromosome selection parameters, tumor growth dynamics and population size on cancer fitness and heterogeneity. We expect that CINner will provide a powerful modeling tool for the oncology community to quantify the impact of newly uncovered genomic alteration mechanisms on shaping tumor progression and adaptation.

3.
Nat Genet ; 55(7): 1198-1209, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386249

RESUMO

Pathogenic mutations in mitochondrial DNA (mtDNA) compromise cellular metabolism, contributing to cellular heterogeneity and disease. Diverse mutations are associated with diverse clinical phenotypes, suggesting distinct organ- and cell-type-specific metabolic vulnerabilities. Here we establish a multi-omics approach to quantify deletions in mtDNA alongside cell state features in single cells derived from six patients across the phenotypic spectrum of single large-scale mtDNA deletions (SLSMDs). By profiling 206,663 cells, we reveal the dynamics of pathogenic mtDNA deletion heteroplasmy consistent with purifying selection and distinct metabolic vulnerabilities across T-cell states in vivo and validate these observations in vitro. By extending analyses to hematopoietic and erythroid progenitors, we reveal mtDNA dynamics and cell-type-specific gene regulatory adaptations, demonstrating the context-dependence of perturbing mitochondrial genomic integrity. Collectively, we report pathogenic mtDNA heteroplasmy dynamics of individual blood and immune cells across lineages, demonstrating the power of single-cell multi-omics for revealing fundamental properties of mitochondrial genetics.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Multiômica , Doenças Mitocondriais/genética , Mitocôndrias/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa