Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 106, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268947

RESUMO

Biofloc technology aims to maximize fish farming productivity by effectively breaking down ammonia and nitrite, promoting healthy flocculation, and enhancing the growth and immunity of cultured animals. However, a major limitation in this field is the suitable starter microbial culture and narrow number of fish species that have been tested with the biofloc system. Here, we investigated various microbial inoculum containing beneficial microbes with probiotics, immunostimulatory and flocs development and bioremediation properties would lead to the development of ideal biofloc development. Three treatment groups with different microbial combinations, viz., group 1 [Bacillus subtilis (AN1) + Pseudomonas putida (PB3) + Saccharomyces cerevisiae (ATCC-2601)], group 2 [B. subtilis (AN2) + P. fluorescens (PC3) + S. cerevisiae (ATCC-2601)] and group 3 [B. subtilis (AN3) + P. aeruginosa (PA2) + S. cerevisiae (ATCC-2601)] were used and compared with the positive control (pond water without microbial inoculums) and negative control (clear water: without microbial inoculums and carbon sources) on biofloc development and its characteristic features to improve the water quality and growth of fish. We demonstrated that microbial inoculums, especially group 2, significantly improve the water quality and microbiota of flocs and gut of the test animal, Heteropneustes fossilis. The study further demonstrates that biofloc system supplemented with microbial inoculums positively regulates gut histomorphology and growth performance, as evidenced by improved villous morphology, amylase, protease and lipase activity, weight gain, FCR, T3, T4 and IGF1 levels. The inoculums induced an antioxidative response marked by significantly higher values of catalase (CAT) and superoxide dismutase (SOD) activity. Furthermore, the supplementation of microbial inoculums enhances both specific and non-specific immune responses and significantly elevated levels of immune genes (transferrin, interleukin-1ß and C3), and IgM was recorded. This study provides a proof-of-concept approach for assessing microbial inoculums on fish species that can be further utilized to develop biofloc technology for use in sustainable aquaculture.


Assuntos
Peixes-Gato , Saccharomyces cerevisiae , Animais , Suplementos Nutricionais , Imunidade Inata , Aquicultura
2.
J Fungi (Basel) ; 9(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36836257

RESUMO

Aphanomyces invadans is an aquatic oomycete pathogen and the causative agent of epizootic ulcerative syndrome (EUS) in fresh and brackish water fish, which is responsible for severe mortalities and economic losses in aquaculture. Therefore, there is an urgent need to develop anti-infective strategies to control EUS. An Oomycetes, a fungus-like eukaryotic microorganism, and a susceptible species, i.e., Heteropneustes fossilis, are used to establish whether an Eclipta alba leaf extract is effective against the EUS-causing A. invadans. We found that treatment with methanolic leaf extract, at concentrations between 50-100 ppm (T4-T6), protects the H. fossilis fingerlings against A. invadans infection. These optimum concentrations induced anti-stress and antioxidative response in fish, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) levels in treated animals, as compared with the controls. We further demonstrated that the A. invadans-protective effect of methanolic leaf extract was caused by its immunomodulatory effect and is linked to the enhanced survival of fingerlings. The analysis of non-specific and specific immune factors confirms that methanolic leaf extract-induced HSP70, HSP90 and IgM levels mediate the survival of H. fossilis fingerlings against A. invadans infection. Taken together, our study provides evidence that the generation of anti-stress and antioxidative responses, as well as humoral immunity, may play a role in protecting H. fossilis fingerlings against A. invadans infection. It is probable that E. alba methanolic leaf extract treatment might become part of a holistic strategy to control EUS in fish species.

3.
Front Physiol ; 14: 1168284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362433

RESUMO

Characterization and functional profiling of the gut microbiota are essential for guiding nutritional interventions in fish and achieving favorable host-microbe interactions. Thus, we conducted a 30 days study to explore and document the gut microbial community of O. niloticus, as well as to evaluate the effects of a polysaccharide-based prebiotics with 0.5% and 0.75% Aloe vera extract on the gut microbiome through genomic analysis. The V3-V4 region of 16S rRNA was amplified and sequenced using Illumina HiSeq 2500, resulting in 1,000,199 reads for operational taxonomic unit (OTU) identification. Out of 8,894 OTUs, 1,181 were selected for further analysis. Our results revealed that Planctomycetes, Firmicutes, Proteobacteria, Verrucomicrobia, Actinobacteria, and Fusobacteria were the dominant phyla in both control and treatment samples. Higher doses of prebiotics were found to improve Planctomycetes and Firmicutes while decreasing Proteobacteria and Verrucomicrobia. We observed increasing trends in the abundance of Bacilli, Bacillaceae, and Bacillus bacteria at the class, family, and genus levels, respectively, in a dose-dependent manner. These findings were consistent with the conventional colony count data, which showed a higher prevalence of Bacillus in prebiotic-supplemented groups. Moreover, predicted functional analysis using PICRUSt indicated a dose-dependent upregulation in glycolysis V, superpathway of glycol metabolism and degradation, glucose and xylose degradation, glycolysis II, and sulfoglycolysis pathways. Most of the energy, protein, and amino acid synthesis pathways were upregulated only at lower doses of prebiotic treatment. Our findings suggest that the gut microbiome of O. niloticus can be optimized through nutritional interventions with plant-based polysaccharides for improved growth performance in commercial fish.

4.
J Biomol Struct Dyn ; 38(2): 450-459, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30744535

RESUMO

Gram-negative bacteria is the main causative agents for columnaris disease outbreak to finfishes. The outer membrane proteins (OMPs) candidate of Flavobacterium columnare bacterial cell served a critical component for cellular invasion targeted to the eukaryotic cell and survival inside the macrophages. Therefore, OMPs considered as the supreme element for the development of promising vaccine against F. columnare. Implies advanced in silico approaches, the predicted 3-D model of targeted OMPs were characterized by the Swiss model server and validated through Procheck programs and Protein Structure Analysis (ProSA) web server. The protein sequences having B-cell binding sites were preferred from sequence alignment; afterwards the B cell epitopes prediction was prepared using the BCPred and amino acid pairs (AAP) prediction algorithms modules of BCPreds. Consequently, the selected antigenic amino acids sequences (B-cell epitopic regions) were analyzed for T-cell epitopes determination (MHC I and MHC II alleles binding sequence) performing the ProPred 1 and ProPred server respectively. The epitopes (9 mer: IKKYEPAPV, YGPNYKWKF and YRGLNVGTS) within the OMPs binds to both of the MHC classes (MHC I and MHC II) and covered highest number of MHC alleles are characterized. OMPs of F. columnare being conserved across serotypes and highly immunogenic for their exposed epitopes on the cell surface as a potent candidate focus to vaccine development for combating the disease problems in commercial aquaculture. The portrayed epitopes might be beneficial for practical designing of abundant peptide-based vaccine development against the columnaris through boosting up the advantageous immune responses.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Biologia Computacional , Epitopos/imunologia , Flavobacterium/imunologia , Proteínas de Membrana/imunologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Software
5.
Gene ; 679: 202-211, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30201335

RESUMO

MicroRNAs (miRNAs) are the class of small, non-coding RNAs that are produced from precursor transcripts by subsequent processing steps mediated by members of the RNaseIII family, Dicer and Drosha protein within cell. The importance of zebrafish miRNAs in regulation of normal cellular development and support to various kinds of metabolism process. Although the zebrafish model provides a fundamental platform for the study of developmental biology but recent work with zebrafish model has expanded its appliance to a broad range of experimental studies relevant to different kind of human diseases. Presently, the zebrafish model is used for the study of cardiovascular disease, schizophrenia, bipolar I disorder in eyes, psoriasis, spinal cord injury, cancer and diabetes that showing in some selected miRNAs are regulate these diseases in molecular levels. Here, a superior drive performed to depict the fundamental utilization of the zebrafish miRNAs that targeted to several clinical diseases connected to human. This review aims to provide a summary of understanding of the cellular mechanism which is responsible for selected diseases and suggests some therapeutic application for inhibition of miRNA functions.


Assuntos
MicroRNAs/uso terapêutico , Terapia de Alvo Molecular/métodos , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa