Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Divers ; 26(1): 467-487, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34609711

RESUMO

Alzheimer's disease (AD) is one of the most common forms of dementia and is associated with a decline in cognitive function and language ability. The deficiency of the cholinergic neurotransmitter known as acetylcholine (ACh) is associated with AD. Acetylcholinesterase (AChE) hydrolyses ACh and inhibits the cholinergic transmission. Furthermore, both AChE and butyrylcholinesterase (BChE) plays important roles in early and late stages of AD. Therefore, the inhibition of either or both cholinesterase enzymes represent a promising therapeutic route for treating AD. In this study, a large-scale classification structure-activity relationship model was developed to predict cholinesterase inhibitory activities as well as revealing important substructures governing their activities. Herein, a non-redundant dataset constituting 985 and 1056 compounds for AChE and BChE, respectively, was obtained from the ChEMBL database. These inhibitors were described by 12 sets of molecular fingerprints and predictive models were developed using the random forest algorithm. Evaluation of the model performance by means of Matthews correlation coefficient and consideration of the model's interpretability indicated that the SubstructureCount fingerprint was the most robust with five-fold cross-validated MCC of [0.76, 0.82] for AChE and BChE, respectively, and test MCC of [0.73, 0.97]. Feature interpretation revealed that the aromatic ring system, heterocyclic nitrogen containing compounds and amines are important for cholinesterase inhibition. Finally, the model was deployed as a publicly available webserver called the ABCpred at http://codes.bio/abcpred/ .


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Humanos , Relação Estrutura-Atividade
2.
J Comput Aided Mol Des ; 35(10): 1037-1053, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34622387

RESUMO

Fast and accurate identification of inhibitors with potency against HCV NS5B polymerase is currently a challenging task. As conventional experimental methods is the gold standard method for the design and development of new HCV inhibitors, they often require costly investment of time and resources. In this study, we develop a novel machine learning-based meta-predictor (termed StackHCV) for accurate and large-scale identification of HCV inhibitors. Unlike the existing method, which is based on single-feature-based approach, we first constructed a pool of various baseline models by employing a wide range of heterogeneous molecular fingerprints with five popular machine learning algorithms (k-nearest neighbor, multi-layer perceptron, partial least squares, random forest and support vectors machine). Secondly, we integrated these baseline models in order to develop the final meta-based model by means of the stacking strategy. Extensive benchmarking experiments showed that StackHCV achieved a more accurate and stable performance as compared to its constituent baseline models on the training dataset and also outperformed the existing predictor on the independent test dataset. To facilitate the high-throughput identification of HCV inhibitors, we built a web server that can be freely accessed at http://camt.pythonanywhere.com/StackHCV . It is expected that StackHCV could be a useful tool for fast and precise identification of potential drugs against HCV NS5B particularly for liver cancer therapy and other clinical applications.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Internet/estatística & dados numéricos , Aprendizado de Máquina , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Algoritmos , Antivirais/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Hepacivirus/isolamento & purificação , Hepatite C/virologia , Humanos , Máquina de Vetores de Suporte
3.
J Comput Chem ; 41(20): 1820-1834, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32449536

RESUMO

Hepatitis C virus (HCV) is one of the major causes of liver disease affecting an estimated 170 million people culminating in 300,000 deaths from cirrhosis or liver cancer. NS5B is one of three potential therapeutic targets against HCV (i.e., the other two being NS3/4A and NS5A) that is central to viral replication. In this study, we developed a classification structure-activity relationship (CSAR) model for identifying substructures giving rise to anti-HCV activities among a set of 578 non-redundant compounds. NS5B inhibitors were described by a set of 12 fingerprint descriptors and predictive models were constructed from 100 independent data splits using the random forest algorithm. The modelability (MODI index) of the data set was determined to be robust with a value of 0.88 exceeding established threshold of 0.65. The predictive performance was deduced by the accuracy, sensitivity, specificity, and Matthews correlation coefficient, which was found to be statistically robust (i.e., the former three parameters afforded values in excess of 0.8 while the latter statistical parameter provided a value >0.7). An in-depth analysis of the top 20 important descriptors revealed that aromatic ring and alkyl side chains are important for NS5B inhibition. Finally, the predictive model is deployed as a publicly accessible HCVpred web server (available at http://codes.bio/hcvpred/) that would allow users to predict the biological activity as being active or inactive against HCV NS5B. Thus, the knowledge and web server presented herein can be used in the design of more potent and specific drugs against the HCV NS5B.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Hepacivirus/enzimologia , Modelos Moleculares , Análise Multivariada , Inibidores de Proteases/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
4.
Med Res Rev ; 39(5): 1730-1778, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30628099

RESUMO

The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the ß-amyloid precursor protein (ßAPP) and ß-amyloid (Aß) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Animais , Descoberta de Drogas , Humanos , Neurotransmissores/metabolismo
5.
Arch Virol ; 163(5): 1141-1152, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29356992

RESUMO

Enterovirus-71 (EV71) and coxsackievirus-A16 (CA16) frequently cause hand-foot-mouth disease (HFMD) epidemics among infants and young children. CA16 infections are usually mild, while EV71 disease may be fatal due to neurologic complications. As such, the ability to rapidly and specifically recognize EV71 is needed to facilitate proper case management and epidemic control. Accordingly, the aim of this study was to generate antibodies to EV71-virion protein-2 (VP2) by phage display technology for further use in specific detection of EV71. A recombinant peptide sequence of EV71-VP2, carrying a predicted conserved B cell epitope fused to glutathione-S-transferase (GST) (designated GST-EV71-VP2/131-160), was produced. The fusion protein was used as bait in in-solution biopanning to separate protein-bound phages from a murine scFv (MuscFv) phage display library constructed from an immunoglobulin gene repertoire from naïve ICR mice. Three phage-transformed E. coli clones (clones 63, 82, and 83) produced MuscFvs that bound to the GST-EV71-VP2/131-160 peptide. The MuscFv of clone 83 (MuscFv83), which produced the highest ELISA signal to the target antigen, was further tested. MuscFv83 also bound to full-length EV71-VP2 and EV71 particles, but did not bind to GST, full-length EV71-VP1, or the antigenically related CA16. MuscFv83 could be a suitable reagent for rapid antigen-based immunoassay, such as immunochromatography (ICT), for the specific detection and/or diagnosis of EV71 infection as well as epidemic surveillance.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Enterovirus Humano A/imunologia , Epitopos/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Proteínas do Capsídeo/genética , Enterovirus Humano A/genética , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/virologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Escherichia coli/genética , Doença de Mão, Pé e Boca/diagnóstico , Doença de Mão, Pé e Boca/virologia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Biblioteca de Peptídeos , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/biossíntese
6.
Int J Mol Sci ; 19(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061509

RESUMO

ß-Lactams are the most widely used and effective antibiotics for the treatment of infectious diseases. Unfortunately, bacteria have developed several mechanisms to combat these therapeutic agents. One of the major resistance mechanisms involves the production of ß-lactamase that hydrolyzes the ß-lactam ring thereby inactivating the drug. To overcome this threat, the small molecule ß-lactamase inhibitors (e.g., clavulanic acid, sulbactam and tazobactam) have been used in combination with ß-lactams for treatment. However, the bacterial resistance to this kind of combination therapy has evolved recently. Therefore, multiple attempts have been made to discover and develop novel broad-spectrum ß-lactamase inhibitors that sufficiently work against ß-lactamase producing bacteria. ß-lactamase inhibitory proteins (BLIPs) (e.g., BLIP, BLIP-I and BLIP-II) are potential inhibitors that have been found from soil bacterium Streptomyces spp. BLIPs bind and inhibit a wide range of class A ß-lactamases from a diverse set of Gram-positive and Gram-negative bacteria, including TEM-1, PC1, SME-1, SHV-1 and KPC-2. To the best of our knowledge, this article represents the first systematic review on ß-lactamase inhibitors with a particular focus on BLIPs and their inherent properties that favorably position them as a source of biologically-inspired drugs to combat antimicrobial resistance. Furthermore, an extensive compilation of binding data from ß-lactamase⁻BLIP interaction studies is presented herein. Such information help to provide key insights into the origin of interaction that may be useful for rationally guiding future drug design efforts.


Assuntos
Bactérias/enzimologia , Infecções Bacterianas/tratamento farmacológico , Proteínas de Bactérias/farmacologia , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Animais , Bactérias/química , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Humanos , Modelos Moleculares , Streptomyces/química , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/isolamento & purificação , beta-Lactamases/química
7.
Biochem Biophys Res Commun ; 476(4): 654-664, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27240954

RESUMO

NS4B of hepatitis C virus (HCV) initiates membrane web formation, binds RNA and other HCV proteins for viral replication complex (RC) formation, hydrolyses NTP, and inhibits innate anti-viral immunity. Thus, NS4B is an attractive target of a novel anti-HCV agent. In this study, humanized-nanobodies (VHs/VHHs) that bound to recombinant NS4B were produced by means of phage display technology. The nanobodies were linked molecularly to a cell penetrating peptide, penetratin (PEN), for making them cell penetrable (become transbodies). Human hepatic (Huh7) cells transfected with HCV JFH1-RNA that were treated with transbodies from four Escherichia coli clones (PEN-VHH7, PEN-VHH9, PEN-VH33, and PEN-VH43) had significant reduction of HCV RNA amounts in their culture fluids and intracellularly when compared to the transfected cells treated with control transbody and medium alone. The results were supported by the HCV foci assay. The transbody treated-transfected cells also had upregulation of the studied innate cytokine genes, IRF3, IFNß and IL-28b. The transbodies have high potential for testing further as a novel anti-HCV agent, either alone, adjunct of existing anti-HCV agents/remedies, or in combination with their cognates specific to other HCV enzymes/proteins.


Assuntos
Anticorpos Antivirais/administração & dosagem , Hepacivirus/imunologia , Hepacivirus/fisiologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/fisiologia , Replicação Viral/imunologia , Replicação Viral/fisiologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Antivirais/administração & dosagem , Antivirais/química , Proteínas de Transporte/administração & dosagem , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Técnicas de Visualização da Superfície Celular , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Simulação por Computador , Hepacivirus/genética , Humanos , Imunidade Inata/genética , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Transfecção , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
8.
Int J Mol Sci ; 17(7)2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27376281

RESUMO

Host defense peptides (HDPs) are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA) is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.


Assuntos
Aminoácidos/metabolismo , Peptídeos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Gramicidina/química , Gramicidina/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Estrutura Secundária de Proteína
9.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119449, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858209

RESUMO

Ribosomal protein S6 kinase 1 (S6K1), a major downstream effector molecule of mTORC1, regulates cell growth and proliferation by modulating protein translation and ribosome biogenesis. We have recently identified eIF4E as an intermediate in transducing signals from mTORC1 to S6K1 and further demonstrated that the role of mTORC1 is restricted to inducing eIF4E phosphorylation and interaction with S6K1. This interaction relieves S6K1 auto-inhibition and facilitates its hydrophobic motif (HM) phosphorylation and activation as a consequence. These observations underscore a possible involvement of mTORC1 independent kinase in mediating HM phosphorylation. Here, we report mTORC2 as an in-vivo/physiological HM kinase of S6K1. We show that rapamycin-resistant S6K1 truncation mutant ∆NH∆CT continues to display HM phosphorylation with selective sensitivity toward Torin-1. We also show that HM phosphorylation of wildtype S6K1and ∆NH∆CT depends on the presence of mTORC2 regulatory subunit-rictor. Furthermore, truncation mutagenesis and molecular docking analysis reveal the involvement of a conserved 19 amino acid stretch of S6K1 in mediating interaction with rictor. We finally show that deletion of the 19 amino acid region from wildtype S6K1 results in loss of interaction with rictor, with a resultant loss of HM phosphorylation regardless of the presence of functional TOS motif. Our data demonstrate that mTORC2 acts as a physiological HM kinase that can activate S6K1 after its auto-inhibition is overcome by mTORC1. We, therefore, propose a novel mechanism for S6K1 regulation where mTOR complexes 1 and 2 act in tandem to activate the enzyme.


Assuntos
Fator de Iniciação 4E em Eucariotos , Serina-Treonina Quinases TOR , Aminoácidos , Fator de Iniciação 4E em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Simulação de Acoplamento Molecular , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
10.
EXCLI J ; 22: 84-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814851

RESUMO

Cancer is the leading cause of death worldwide, resulting in the mortality of more than 10 million people in 2020, according to Global Cancer Statistics 2020. A potential cancer therapy involves targeting the DNA repair process by inhibiting PARP-1. In this study, classification models were constructed using a non-redundant set of 2018 PARP-1 inhibitors. Briefly, compounds were described by 12 fingerprint types and built using the random forest algorithm concomitant with various sampling approaches. Results indicated that PubChem with an oversampling approach yielded the best performance, with a Matthews correlation coefficient > 0.7 while also affording interpretable molecular features. Moreover, feature importance, as determined from the Gini index, revealed that the aromatic/cyclic/heterocyclic moiety, nitrogen-containing fingerprints, and the ether/aldehyde/alcohol moiety were important for PARP-1 inhibition. Finally, our predictive model was deployed as a web application called PARP1pred and is publicly available at https://parp1pred.streamlitapp.com, allowing users to predict the biological activity of query compounds using their SMILES notation as the input. It is anticipated that the model described herein will aid in the discovery of effective PARP-1 inhibitors.

11.
PLoS One ; 18(5): e0284173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141227

RESUMO

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the biggest healthcare issue worldwide. This study aimed to develop a monoclonal antibody against SARS-CoV-2 from B cells of recovered COVID-19 patients, which might have beneficial therapeutic purposes for COVID-19 patients. We successfully generated human monoclonal antibodies (hmAbs) against the receptor binding domain (RBD) protein of SARS-CoV-2 using developed hybridoma technology. The isolated hmAbs against the RBD protein (wild-type) showed high binding activity and neutralized the interaction between the RBD and the cellular receptor angiotensin-converting enzyme 2 (ACE2) protein. Epitope binning and crystallography results displayed target epitopes of these antibodies in distinct regions beneficial in the mix as a cocktail. The 3D2 binds to conserved epitopes among multi-variants. Pseudovirion-based neutralization results revealed that the antibody cocktail, 1D1 and 3D2, showed high potency in multiple variants of SARS-CoV-2 infection. In vivo studies showed the ability of the antibody cocktail treatment (intraperitoneal (i.p.) administration) to reduce viral load (Beta variant) in blood and various tissues. While the antibody cocktail treatment (intranasal (i.n.) administration) could not significantly reduce the viral load in nasal turbinate and lung tissue, it could reduce the viral load in blood, kidney, and brain tissue. These findings revealed that the efficacy of the antibody cocktail, 1D1 and 3D2, should be further studied in animal models in terms of timing of administration, optimal dose, and efficacy to mitigate inflammation in targeted tissue such as nasal turbinate and lung.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , Anticorpos Monoclonais , Epitopos , Glicoproteína da Espícula de Coronavírus
12.
EXCLI J ; 21: 1331-1351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540675

RESUMO

The emergence of New Delhi metallo-beta-lactamase-1 (NDM-1) has conferred enteric bacteria resistance to almost all beta-lactam antibiotics. Its capability of horizontal transfer through plasmids, amongst humans, animal reservoirs and the environment, has added up to the totality of antimicrobial resistance control, animal husbandry and food safety. Thus far, there have been no effective drugs for neutralizing NDM-1. This study explores the structure-activity relationship of NDM-1 inhibitors. IC50 values of NDM-1 inhibitors were compiled from both the ChEMBL database and literature. After curation, a final set of 686 inhibitors were used for machine learning model building using the random forest algorithm against 12 sets of molecular fingerprints. Benchmark results indicated that the KlekotaRothCount fingerprint provided the best overall performance with an accuracy of 0.978 and 0.778 for the training and testing set, respectively. Model interpretation revealed that nitrogen-containing features (KRFPC 4080, KRFPC 3882, KRFPC 677, KRFPC 3608, KRFPC 3750, KRFPC 4287 and KRFPC 3943), sulfur-containing substructures (KRFPC 2855 and KRFPC 4843), aromatic features (KRFPC 1566, KRFPC 1564, KRFPC 1642, KRFPC 3608, KRFPC 4287 and KRFPC 3943), carbonyl features (KRFPC 1193 and KRFPC 3025), aliphatic features (KRFPC 2975, KRFPC 297, KRFPC 3224 and KRFPC 669) are features contributing to NDM-1 inhibitory activity. It is anticipated that findings from this study would help facilitate the drug discovery of NDM-1 inhibitors by providing guidelines for further lead optimization.

13.
Biomed Res Int ; 2022: 1846485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35059459

RESUMO

DNA barcodes are regarded as hereditary succession codes that serve as a recognition marker to address several queries relating to the identification, classification, community ecology, and evolution of certain functional traits in organisms. The mitochondrial cytochrome c oxidase 1 (CO1) gene as a DNA barcode is highly efficient for discriminating vertebrate and invertebrate animal species. Similarly, different specific markers are used for other organisms, including ribulose bisphosphate carboxylase (rbcL), maturase kinase (matK), transfer RNA-H and photosystem II D1-ApbsArabidopsis thaliana (trnH-psbA), and internal transcribed spacer (ITS) for plant species; 16S ribosomal RNA (16S rRNA), elongation factor Tu gene (Tuf gene), and chaperonin for bacterial strains; and nuclear ITS for fungal strains. Nevertheless, the taxon coverage of reference sequences is far from complete for genus or species-level identification. Applying the next-generation sequencing approach to the parallel acquisition of DNA barcode sequences could greatly expand the potential for library preparation or accurate identification in biodiversity research. Overall, this review articulates on the DNA barcoding technology as applied to different organisms, its universality, applicability, and innovative approach to handling DNA-based species identification.


Assuntos
Arabidopsis/genética , Bactérias , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , DNA Fúngico/genética , DNA de Plantas/genética , Fungos , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética
14.
Front Cell Infect Microbiol ; 12: 758833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967859

RESUMO

Background: Efficient detection tools for determining staphylococcal pleural infection are critical for its eradication. The objective of this meta-analysis was to assess the diagnostic utility of nucleic acid amplification tests (NAAT) in suspected empyema cases to identify staphylococcal strains and avoid unnecessary empiric methicillin-resistant Staphylococcus aureus (MRSA) therapy. Methods: From inception to July 24, 2021, relevant records were retrieved from PubMed, Embase, Scopus, Web of Science, and the Cochrane Library. The quality of studies was determined using the QUADAS-2 tool. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and hierarchical summary receiver operating characteristic (HSROC) curve for NAAT's diagnostic performance were evaluated using an HSROC model. Results: Eight studies comprising 424 samples evaluated NAAT accuracy for Staphylococcus aureus (SA) identification, while four studies comprising 317 samples evaluated methicillin-resistant Staphylococcus aureus (MRSA) identification. The pooled NAAT summary estimates for detection of both SA (sensitivity: 0.35 (95% CI 0.19-0.55), specificity: 0.95 (95% CI 0.92-0.97), PLR: 7.92 (95% CI 4.98-12.59), NLR: 0.44 (95% CI 0.14-1.46), and DOR: 24.0 (95% CI 6.59-87.61) ) and MRSA (sensitivity: 0.45 (95% CI 0.15-0.78), specificity: 0.93 (95% CI 0.89-0.95), PLR: 10.06 (95% CI 1.49-67.69), NLR: 0.69 (95% CI 0.41-1.15), and DOR: 27.18 (95% CI 2.97-248.6) ) were comparable. The I2 statistical scores for MRSA and SA identification sensitivity were 13.7% and 74.9%, respectively, indicating mild to substantial heterogeneity. PCR was frequently used among NAA tests, and its diagnostic accuracy coincided well with the overall summary estimates. A meta-regression and subgroup analysis of country, setting, study design, patient selection, and sample condition could not explain the heterogeneity (meta-regression P = 0.66, P = 0.46, P = 0.98, P = 0.68, and P = 0.79, respectively) in diagnostic effectiveness. Conclusions: Our study suggested that the diagnostic accuracy of NAA tests is currently inadequate to substitute culture as a principal screening test. NAAT could be used in conjunction with microbiological culture due to the advantage of faster results and in situations where culture tests are not doable.


Assuntos
Empiema , Staphylococcus aureus Resistente à Meticilina , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Curva ROC , Staphylococcus
15.
Ulus Travma Acil Cerrahi Derg ; 17(3): 277-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21935810

RESUMO

Sciatic hernia is a rare pelvic floor hernia that occurs through the greater or lesser sciatic foramen. Sciatic hernias often present as pelvic pain, particularly in women, and diagnosis can be difficult. Sciatic hernia is one of the rarest forms of internal hernia, which can present as signs and symptoms of small bowel obstruction, swelling in the respective gluteal region or pelvic pain. Transabdominal and transgluteal operative approaches, including laparoscopic repair, have been reported. We present a case of left-sided sciatic hernia with incarcerated small bowel as its contents. The hernia was missed by ultrasonography and plain abdominal radiography, but the clinical features were suggestive of an obturator hernia.


Assuntos
Hérnia Abdominal/diagnóstico , Obstrução Intestinal/diagnóstico , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Feminino , Hérnia Abdominal/complicações , Hérnia Abdominal/diagnóstico por imagem , Hérnia Abdominal/cirurgia , Hérnia do Obturador/diagnóstico , Hérnia do Obturador/diagnóstico por imagem , Hérnia do Obturador/cirurgia , Humanos , Obstrução Intestinal/complicações , Obstrução Intestinal/diagnóstico por imagem , Obstrução Intestinal/cirurgia , Laparoscopia , Ultrassonografia
16.
PeerJ ; 9: e11716, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285834

RESUMO

Estrogen receptors alpha and beta (ERα and ERß) are responsible for breast cancer metastasis through their involvement of clinical outcomes. Estradiol and hormone replacement therapy targets both ERs, but this often leads to an increased risk of breast and endometrial cancers as well as thromboembolism. A major challenge is posed for the development of compounds possessing ER subtype specificity. Herein, we present a large-scale classification structure-activity relationship (CSAR) study of inhibitors from the ChEMBL database which consisted of an initial set of 11,618 compounds for ERα and 7,810 compounds for ERß. The IC50 was selected as the bioactivity unit for further investigation and after the data curation process, this led to a final data set of 1,593 and 1,281 compounds for ERα and ERß, respectively. We employed the random forest (RF) algorithm for model building and of the 12 fingerprint types, models built using the PubChem fingerprint was the most robust (Ac of 94.65% and 92.25% and Matthews correlation coefficient (MCC) of 89% and 76% for ERα and ERß, respectively) and therefore selected for feature interpretation. Results indicated the importance of features pertaining to aromatic rings, nitrogen-containing functional groups and aliphatic hydrocarbons. Finally, the model was deployed as the publicly available web server called ERpred at http://codes.bio/erpred where users can submit SMILES notation as the input query for prediction of the bioactivity against ERα and ERß.

17.
PLoS One ; 16(3): e0248887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33755687

RESUMO

In this study, a key issue to be addressed is the safe disposal of hybridoma instability. Hybridoma technology was used to produce anti-O. viverrini monoclonal antibody. Previous studies have shown that antibody production via antibody phage display can sustain the hybridoma technique. This paper presents the utility of antibody phage display technology for producing the phage displayed KKU505 Fab fragment and using experiments in concomitant with molecular simulation for characterization. The phage displayed KKU505 Fab fragment and characterization were successfully carried out. The KKU505 hybridoma cell line producing anti-O. viverrini antibody predicted to bind to myosin was used to synthesize cDNA so as to amplify the heavy chain and the light chain sequences. The KKU505 displayed phage was constructed and characterized by a molecular modeling in which the KKU505 Fab fragment and -O. viverrini myosin head were docked computationally and it is assumed that the Fab fragment was specific to -O. viverrini on the basis of mass spectrometry and Western blot. This complex interaction was confirmed by molecular simulation. Furthermore, the KKU505 displayed phage was validated using indirect enzyme-linked immunosorbent assays (ELISA) and immunohistochemistry. It is worthy to note that ELISA and immunohistochemistry results confirmed that the Fab fragment was specific to the -O. viverrini antigen. Results indicated that the approach presented herein can generate anti-O. viverrini antibody via the phage display technology. This study integrates the use of phage display technology together with molecular simulation for further development of monoclonal antibody production. Furthermore, the presented work has profound implications for antibody production, particularly by solving the problem of hybridoma stability issues.


Assuntos
Anticorpos Anti-Helmínticos/biossíntese , Anticorpos Anti-Helmínticos/imunologia , Simulação de Dinâmica Molecular , Opisthorchis/imunologia , Biblioteca de Peptídeos , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/química , Antígenos de Helmintos/química , Antígenos de Helmintos/imunologia , Sistema Biliar/imunologia , Sistema Biliar/parasitologia , Bovinos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Simulação de Acoplamento Molecular , Miosinas/química , Reprodutibilidade dos Testes , Soroalbumina Bovina/análise
18.
Front Pediatr ; 9: 713447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422731

RESUMO

Background: Treatment of bloodstream staphylococcal infections (BSI) necessitates the prompt initiation of appropriate antimicrobial agents and the rapid de-escalation of excessive broad-spectrum coverage to reduce the risk of mortality. We, therefore, aimed to demonstrate the diagnostic accuracy of nucleic acid amplification tests (NAAT) for the identification of methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) in clinically suspected patients. Methods: Until November 23, 2020, databases including PubMed, Scopus, Embase, and Web of Science were scanned for eligible studies. A bivariate random-effects model was used for meta-analysis of the 33 included studies obtained from 1606 citations, and pooled summary estimates with 95% confidence intervals (CI) were generated. Results: Twenty-three studies (n = 8,547) assessed NAAT accuracy for MSSA detection, while three studies (n = 479) evaluated MRSA detection in adults. The pooled NAAT sensitivity and specificity for MRSA in adults was higher [sensitivity: 0.83 (95% CI 0.59-0.96), specificity: 0.99 (95% CI 0.98-1.0)] as compared to MSSA [sensitivity: 0.76 (95% CI 0.69-0.82), specificity: 0.98 (95% CI 0.98-0.99)]. Similarly, eight studies (n = 4,089) investigating MSSA in pediatric population reported higher NAAT accuracy [sensitivity: 0.89 (95% CI 0.76-0.96), specificity: 0.98 (95% CI 0.97-0.98)] compared to adults. Among NAA tests, SeptiFast (real-time PCR, commercial) was frequently applied, and its diagnostic accuracy corresponded well to the overall summary estimates. A meta-regression and subgroup analysis of study design, sample condition, and patient selection method could not explain the heterogeneity (P > 0.05) in the diagnostic efficiency. Conclusions: NAAT could be applied as the preferred initial tests for timely diagnosis and BSI management.

19.
Protein Eng Des Sel ; 342021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34908139

RESUMO

Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.


Assuntos
Neoplasias da Mama , Receptor ErbB-2/imunologia , Anticorpos de Domínio Único , Anticorpos Monoclonais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Técnicas de Visualização da Superfície Celular , Detecção Precoce de Câncer , Feminino , Humanos , Anticorpos de Domínio Único/genética
20.
Int J Infect Dis ; 95: 15-21, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32194240

RESUMO

OBJECTIVES: Effective methods for diagnosing urogenital tuberculosis (UGTB) are important for its clinical management. Therefore, we undertook a systematic review to assess the performance of the urine-based Xpert MTB/RIF assay for UGTB. METHODS: PubMed, Embase, Web of Science, the Cochrane library, and Scopus were systematically searched up to July 30, 2019. A hierarchical summary receiver operating characteristic (HSROC) was applied to calculate the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and odds ratio (OR) for the diagnostic accuracy of the Xpert test. RESULTS: Our search identified 858 unique articles from which 69 studies were selected for full-text revision, with 12 studies meeting the inclusion criteria. Eleven studies comprising 1202 samples compared Xpert with mycobacterial culture, while 924 samples from eight studies compared it with a composite reference standard (CRS). The values for pooled sensitivity, specificity, PLR, NLR, and OR were 0.89, 0.95, 20.1, 0.18, and 159.53, respectively, when compared with the mycobacterial culture. Likewise, when compared with a CRS, the respective pooled sensitivity, specificity, PLR, NLR, and OR values were 0.55, 0.99, 40.67, 0.43, and 166.17, thereby suggesting a high level of accuracy for diagnosing UGTB. A meta-regression and sub-group analysis of TB-burden countries, study design, decontamination, concentration, and reference standard could not explain the heterogeneity (p > 0.05) in the diagnostic efficiency. CONCLUSIONS: Our results suggested that Xpert is a promising diagnostic tool for the diagnosis of UGTB via urine specimen.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Tuberculose Urogenital/diagnóstico , Urina/microbiologia , Farmacorresistência Bacteriana , Humanos , Funções Verossimilhança , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Razão de Chances , Curva ROC , Rifampina , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa