Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 587(7835): 650-656, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33149304

RESUMO

G-protein-coupled receptors (GPCRs) are membrane proteins that modulate physiology across human tissues in response to extracellular signals. GPCR-mediated signalling can differ because of changes in the sequence1,2 or expression3 of the receptors, leading to signalling bias when comparing diverse physiological systems4. An underexplored source of such bias is the generation of functionally diverse GPCR isoforms with different patterns of expression across different tissues. Here we integrate data from human tissue-level transcriptomes, GPCR sequences and structures, proteomics, single-cell transcriptomics, population-wide genetic association studies and pharmacological experiments. We show how a single GPCR gene can diversify into several isoforms with distinct signalling properties, and how unique isoform combinations expressed in different tissues can generate distinct signalling states. Depending on their structural changes and expression patterns, some of the detected isoforms may influence cellular responses to drugs and represent new targets for developing drugs with improved tissue selectivity. Our findings highlight the need to move from a canonical to a context-specific view of GPCR signalling that considers how combinatorial expression of isoforms in a particular cell type, tissue or organism collectively influences receptor signalling and drug responses.


Assuntos
Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Bases de Dados Factuais , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Terapia de Alvo Molecular , Especificidade de Órgãos/efeitos dos fármacos , Isoformas de Proteínas/genética , Proteômica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Análise de Célula Única
2.
Proc Natl Acad Sci U S A ; 120(32): e2218217120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523524

RESUMO

The 70-kD heat shock protein (Hsp70) chaperone system is a central hub of the proteostasis network that helps maintain protein homeostasis in all organisms. The recruitment of Hsp70 to perform different and specific cellular functions is regulated by the J-domain protein (JDP) co-chaperone family carrying the small namesake J-domain, required to interact and drive the ATPase cycle of Hsp70s. Besides the J-domain, prokaryotic and eukaryotic JDPs display a staggering diversity in domain architecture, function, and cellular localization. Very little is known about the overall JDP family, despite their essential role in cellular proteostasis, development, and its link to a broad range of human diseases. In this work, we leverage the exponentially increasing number of JDP gene sequences identified across all kingdoms owing to the advancements in sequencing technology and provide a broad overview of the JDP repertoire. Using an automated classification scheme based on artificial neural networks (ANNs), we demonstrate that the sequences of J-domains carry sufficient discriminatory information to reliably recover the phylogeny, localization, and domain composition of the corresponding full-length JDP. By harnessing the interpretability of the ANNs, we find that many of the discriminatory sequence positions match residues that form the interaction interface between the J-domain and Hsp70. This reveals that key residues within the J-domains have coevolved with their obligatory Hsp70 partners to build chaperone circuits for specific functions in cells.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Humanos , Sequência de Aminoácidos , Genômica , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Filogenia
4.
Entropy (Basel) ; 21(11): 1127, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-32002010

RESUMO

Extracting structural information from sequence co-variation has become a common computational biology practice in the recent years, mainly due to the availability of large sequence alignments of protein families. However, identifying features that are specific to sub-classes and not shared by all members of the family using sequence-based approaches has remained an elusive problem. We here present a coevolutionary-based method to differentially analyze subfamily specific structural features by a continuous sequence reweighting (SR) approach. We introduce the underlying principles and test its predictive capabilities on the Response Regulator family, whose subfamilies have been previously shown to display distinct, specific homo-dimerization patterns. Our results show that this reweighting scheme is effective in assigning structural features known a priori to subfamilies, even when sequence data is relatively scarce. Furthermore, sequence reweighting allows assessing if individual structural contacts pertain to specific subfamilies and it thus paves the way for the identification specificity-determining contacts from sequence variation data.

5.
PLoS Comput Biol ; 11(6): e1004262, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26046683

RESUMO

Hsp70s are a class of ubiquitous and highly conserved molecular chaperones playing a central role in the regulation of proteostasis in the cell. Hsp70s assist a myriad of cellular processes by binding unfolded or misfolded substrates during a complex biochemical cycle involving large-scale structural rearrangements. Here we show that an analysis of coevolution at the residue level fully captures the characteristic large-scale conformational transitions of this protein family, and predicts an evolutionary conserved-and thus functional-homo-dimeric arrangement. Furthermore, we highlight that the features encoding the Hsp70 dimer are more conserved in bacterial than in eukaryotic sequences, suggesting that the known Hsp70/Hsp110 hetero-dimer is a eukaryotic specialization built on a pre-existing template.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Alinhamento de Sequência
6.
Sci Signal ; 16(774): eabm4484, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853962

RESUMO

Engineering protein-protein interactions to generate new functions presents a challenge with great potential for many applications, ranging from therapeutics to synthetic biology. To avoid unwanted cross-talk with preexisting protein interaction networks in a cell, the specificity and selectivity of newly engineered proteins must be controlled. Here, we developed a computational strategy that mimics gene duplication and the divergence of preexisting interacting protein pairs to design new interactions. We used the bacterial PhoQ-PhoP two-component system as a model system to demonstrate the feasibility of this strategy and validated the approach with known experimental results. The designed protein pairs are predicted to exclusively interact with each other and to be insulated from potential cross-talk with their native partners. Thus, our approach enables exploration of uncharted regions of the protein sequence space and the design of new interacting protein pairs.


Assuntos
Modelos Biológicos , Mapas de Interação de Proteínas , Sequência de Aminoácidos , Biologia Sintética
7.
Trends Cell Biol ; 33(1): 30-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35729039

RESUMO

The J-domain proteins (JDP) form the largest protein family among cellular chaperones. In cooperation with the Hsp70 chaperone system, these co-chaperones orchestrate a plethora of distinct functions, including those that help maintain cellular proteostasis and development. JDPs evolved largely through the fusion of a J-domain with other protein subdomains. The highly conserved J-domain facilitates the binding and activation of Hsp70s. How JDPs (re)wire Hsp70 chaperone circuits and promote functional diversity remains insufficiently explained. Here, we discuss recent advances in our understanding of the JDP family with a focus on the regulation built around J-domains to ensure correct pairing and assembly of JDP-Hsp70 machineries that operate on different clientele under various cellular growth conditions.


Assuntos
Proteínas de Choque Térmico HSP40 , Proteostase , Humanos , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Ligação Proteica
8.
Curr Opin Struct Biol ; 80: 102608, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182396

RESUMO

Recent advances in computational approaches and their integration into structural biology enable tackling increasingly complex questions. Here, we discuss several key areas, highlighting breakthroughs and remaining challenges. Theoretical modeling has provided tools to accurately predict and design protein structures on a scale currently difficult to achieve using experimental approaches. Molecular Dynamics simulations have become faster and more precise, delivering actionable information inaccessible by current experimental methods. Virtual screening workflows allow a high-throughput approach to discover ligands that bind and modulate protein function, while Machine Learning methods enable the design of proteins with new functionalities. Integrative structural biology combines several of these approaches, pushing the frontiers of structural and functional characterization to ever larger systems, advancing towards a complete understanding of the living cell. These breakthroughs will accelerate and significantly impact diverse areas of science.


Assuntos
Biologia Computacional , Proteínas , Proteínas/química , Simulação de Dinâmica Molecular
9.
Nat Commun ; 13(1): 1927, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395851

RESUMO

Large oligomeric enzymes control a myriad of cellular processes, from protein synthesis and degradation to metabolism. The 0.5 MDa large TET2 aminopeptidase, a prototypical protease important for cellular homeostasis, degrades peptides within a ca. 60 Å wide tetrahedral chamber with four lateral openings. The mechanisms of substrate trafficking and processing remain debated. Here, we integrate magic-angle spinning (MAS) NMR, mutagenesis, co-evolution analysis and molecular dynamics simulations and reveal that a loop in the catalytic chamber is a key element for enzymatic function. The loop is able to stabilize ligands in the active site and may additionally have a direct role in activating the catalytic water molecule whereby a conserved histidine plays a key role. Our data provide a strong case for the functional importance of highly dynamic - and often overlooked - parts of an enzyme, and the potential of MAS NMR to investigate their dynamics at atomic resolution.


Assuntos
Aminopeptidases , Simulação de Dinâmica Molecular , Aminopeptidases/metabolismo , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Peptídeos
10.
Elife ; 92020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32459176

RESUMO

Approximately 25% of eukaryotic genes code for integral membrane proteins that are assembled at the endoplasmic reticulum. An abundant and widely conserved multi-protein complex termed EMC has been implicated in membrane protein biogenesis, but its mechanism of action is poorly understood. Here, we define the composition and architecture of human EMC using biochemical assays, crystallography of individual subunits, site-specific photocrosslinking, and cryo-EM reconstruction. Our results suggest that EMC's cytosolic domain contains a large, moderately hydrophobic vestibule that can bind a substrate's transmembrane domain (TMD). The cytosolic vestibule leads into a lumenally-sealed, lipid-exposed intramembrane groove large enough to accommodate a single substrate TMD. A gap between the cytosolic vestibule and intramembrane groove provides a potential path for substrate egress from EMC. These findings suggest how EMC facilitates energy-independent membrane insertion of TMDs, explain why only short lumenal domains are translocated by EMC, and constrain models of EMC's proposed chaperone function.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Citosol/química , Citosol/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Domínios Proteicos , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo
11.
Methods Mol Biol ; 2022: 379-397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396912

RESUMO

Thanks to the explosion of genomic sequencing, coevolutionary analysis of protein sequences has gained great and ever-increasing popularity in the last decade, and it is currently an important and well-established tool in structural bioinformatics and computational biology. This chapter concisely introduces the theoretical foundation and the practical aspects of coevolutionary analysis, as well as discusses the molecular modeling strategies to exploit its results in the study of protein structure, dynamics, and interactions. We present here a complete pipeline from sequence extraction to contact prediction through two examples, focusing on the predictions of inter-residue contacts in a single protein domain and on the analysis of a multi-domain protein that undergoes functional, large-scale conformational transitions.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Algoritmos , Evolução Molecular , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas/genética
12.
Front Mol Biosci ; 4: 40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28664160

RESUMO

Direct coupling analysis (DCA) is a powerful statistical inference tool used to study protein evolution. It was introduced to predict protein folds and protein-protein interactions, and has also been applied to the prediction of entire interactomes. Here, we have used it to analyze three proteins of the iron-sulfur biogenesis machine, an essential metabolic pathway conserved in all organisms. We show that DCA can correctly reproduce structural features of the CyaY/frataxin family (a protein involved in the human disease Friedreich's ataxia) despite being based on the relatively small number of sequences allowed by its genomic distribution. This result gives us confidence in the method. Its application to the iron-sulfur cluster scaffold protein IscU, which has been suggested to function both as an ordered and a disordered form, allows us to distinguish evolutionary traces of the structured species, suggesting that, if present in the cell, the disordered form has not left evolutionary imprinting. We observe instead, for the first time, direct indications of how the protein can dimerize head-to-head and bind 4Fe4S clusters. Analysis of the alternative scaffold protein IscA provides strong support to a coordination of the cluster by a dimeric form rather than a tetramer, as previously suggested. Our analysis also suggests the presence in solution of a mixture of monomeric and dimeric species, and guides us to the prevalent one. Finally, we used DCA to analyze interactions between some of these proteins, and discuss the potentials and limitations of the method.

13.
Elife ; 62017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28498104

RESUMO

The interaction between the Heat Shock Proteins 70 and 40 is at the core of the ATPase regulation of the chaperone machinery that maintains protein homeostasis. However, the structural details of the interaction remain elusive and contrasting models have been proposed for the transient Hsp70/Hsp40 complexes. Here we combine molecular simulations based on both coarse-grained and atomistic models with coevolutionary sequence analysis to shed light on this problem by focusing on the bacterial DnaK/DnaJ system. The integration of these complementary approaches resulted in a novel structural model that rationalizes previous experimental observations. We identify an evolutionarily conserved interaction surface formed by helix II of the DnaJ J-domain and a structurally contiguous region of DnaK, involving lobe IIA of the nucleotide binding domain, the inter-domain linker, and the ß-basket of the substrate binding domain.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Mapas de Interação de Proteínas , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Análise de Sequência
14.
Elife ; 62017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504929

RESUMO

Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.


Assuntos
Proteínas de Escherichia coli/química , Evolução Molecular , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Agregados Proteicos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Filogenia , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa