Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(13): 3651-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976584

RESUMO

Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos Deletion or reduction of neuro LSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO)mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress.


Assuntos
Emoções/fisiologia , Genes Precoces , Histona Desmetilases/fisiologia , Processamento Alternativo , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Epigênese Genética , Genes fos , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Plasticidade Neuronal , Fenótipo , Fator de Resposta Sérica/fisiologia , Estresse Psicológico , Transcrição Gênica
2.
Hippocampus ; 28(11): 783-795, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30067287

RESUMO

Brain-derived neurotrophic factor (BDNF), a neurotrophin highly expressed in the hippocampus, plays crucial roles in cognition, neuroplasticity, synaptic function, and dendritic remodeling. The common human Val66Met polymorphism of BDNF has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders, and in the outcome of pro-adaptive and therapeutic treatments. Altered gene-expression profile has been previously shown in BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF Met allele. The aim of this study was to investigate the impact of the BDNF Val66Met polymorphism in the knock-in mouse model on two hippocampal epigenetic marks for transcriptional repression and activation, respectively: trimethylation of lysine 27 on histone H3 (H3K27me3) and acetylation of histone H3 (AcH3), using a genome-wide approach. Chromatin immunoprecipitation followed by deep sequencing of immunoprecipitated DNA (ChIP-Seq) was carried out with specific antibodies for H3K27me3 and AcH3. Our results revealed broad alteration of H3K27me3 and AcH3 marks association profiles in BDNFMet/Met , compared to BDNFVal/Val mice. Bioinformatics analysis showed changes in several biological functions and related pathways, affected by the presence of the polymorphism. In particular, a number of networks of functional interaction contained BDNF as central node. Quantitative PCR analysis confirmed epigenetically related significant changes in the expression of five genes: Dvl1, Nos3, Reln, Lypd6, and Sh3gl2. The first three are involved in dendrite and spine remodeling, morphological features altered in BDNFMet/Met mice. This work in homozygous knock-in mice shows that the human BDNF Val66Met polymorphism induces an array of histone H3 epigenetic modifications, in turn altering the expression of select genes crucial for structural and functional neuronal features.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Polimorfismo Genético , Animais , Biologia Computacional , Técnicas de Introdução de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos Transgênicos , Proteína Reelina , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
3.
Neural Plast ; 2016: 6212983, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881124

RESUMO

Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.


Assuntos
Ansiedade/genética , Depressão/genética , Plasticidade Neuronal/genética , Isolamento Social , Estresse Psicológico/complicações , Estresse Psicológico/genética , Glândulas Suprarrenais/patologia , Animais , Ansiedade/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/sangue , Proteínas do Citoesqueleto/metabolismo , Depressão/etiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Tamanho do Órgão , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico/sangue
4.
Hippocampus ; 25(11): 1380-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25820928

RESUMO

Physical exercise and stressful experiences have been shown to exert opposite effects on behavioral functions and brain plasticity, partly by involving the action of brain-derived neurotrophic factor (BDNF). Although epigenetic modifications are known to play a pivotal role in the regulation of the different BDNF transcripts, it is poorly understood whether epigenetic mechanisms are also implied in the BDNF modulation induced by physical exercise and stress. Here, we show that total BDNF mRNA levels and BDNF transcripts 1, 2, 3, 4, 6, and 7 were reduced immediately after acute restraint stress (RS) in the hippocampus of mice, and returned to control levels 24 h after the stress session. On the contrary, exercise increased BDNF mRNA expression and counteracted the stress-induced decrease of BDNF transcripts. Physical exercise-induced up-regulation of BDNF transcripts was accounted for by increase in histone H3 acetylated levels at specific BDNF promoters, whereas the histone H3 trimethylated lysine 27 and dimethylated lysine 9 levels were unaffected. Acute RS did not change the levels of acetylated and methylated histone H3 at the BDNF promoters. Furthermore, we found that physical exercise and RS were able to differentially modulate the histone deacetylases mRNA levels. Finally, we report that a single treatment with histone deacetylase inhibitors, prior to acute stress exposure, prevented the down-regulation of total BDNF and BDNF transcripts 1, 2, 3, and 6, partially reproducing the effect of physical exercise. Overall, these results suggest that physical exercise and stress are able to differentially modulate the expression of BDNF transcripts by possible different epigenetic mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética/fisiologia , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Atividade Motora/fisiologia , Restrição Física/fisiologia , Estresse Psicológico/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Estresse Psicológico/prevenção & controle
5.
Int J Neuropsychopharmacol ; 18(12)2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26108221

RESUMO

BACKGROUND: The human Val66Met polymorphism in brain-derived neurotrophic factor (BDNF), a key factor in neuroplasticity, synaptic function, and cognition, has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders. BDNF is encoded by multiple transcripts with distinct regulation and localization, but the impact of the Val66Met polymorphism on BDNF regulation remains unclear. METHODS: In BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF(Met) allele, we measured expression levels, epigenetic changes at promoters, and dendritic trafficking of distinct BDNF transcripts using quantitative PCR, chromatin immunoprecipitation (ChIP), and in situ hybridization. RESULTS: BDNF-4 and BDNF-6 transcripts were reduced in BDNF(Met/Met) mice, compared with BDNF(Val/Val) mice. ChIP for acetyl-histone H3, a marker of active gene transcription, and trimethyl-histone-H3-Lys27 (H3K27me3), a marker of gene repression, showed higher H3K27me3 binding to exon 5, 6, and 8 promoters in BDNF(Met/Met). The H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) is involved in epigenetic regulation of BDNF expression, because in neuroblastoma cells BDNF expression was increased both by short interference RNA for EZH2 and incubation with 3-deazaneplanocin A, an inhibitor of EZH2. In situ hybridization for BDNF-2, BDNF-4, and BDNF-6 after pilocarpine treatment showed that BDNF-6 transcript was virtually absent from distal dendrites of the CA1 and CA3 regions in BDNF(Met/Met) mice, while no changes were found for BDNF-2 and BDNF-4. CONCLUSIONS: Impaired BDNF expression and dendritic targeting in BDNF(Met/Met) mice may contribute to reduced regulated secretion of BDNF at synapses, and may be a specific correlate of pathology in individuals carrying the Met allele.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Polimorfismo Genético , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Imunoprecipitação da Cromatina , Dendritos/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Hibridização In Situ , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos Transgênicos , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Complexo Repressor Polycomb 2/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Isoformas de Proteínas , Transporte Proteico/efeitos dos fármacos
6.
BMC Neurosci ; 15: 119, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25332063

RESUMO

BACKGROUND: The novel antidepressant agomelatine, a melatonergic MT1/MT2 agonist combined with 5-HT2c serotonin antagonist properties, showed antidepressant action in preclinical and clinical studies. There is a general agreement that the therapeutic action of antidepressants needs the activation of slow-onset adaptations in downstream signalling pathways finally regulating neuroplasticity. In the last several years, particular attention was given to cAMP-responsive element binding protein (CREB)-related pathways, since it was shown that chronic antidepressants increase CREB phosphorylation and transcriptional activity, through the activation of calcium/calmodulin-dependent (CaM) and mitogen activated protein kinase cascades (MAPK/Erk1/2). Aim of this work was to analyse possible effects of chronic agomelatine on time-dependent changes of different intracellular signalling pathways in hippocampus and prefrontal/frontal cortex of male rats. To this end, measurements were performed 1 h or 16 h after the last agomelatine or vehicle injection. RESULTS: We have found that in naïve rats chronic agomelatine, contrary to traditional antidepressants, did not increase CREB phosphorylation, but modulates the time-dependent regulation of MAPK/Erk1/2 and Akt/glycogen synthase kinase-3 (GSK-3) pathways. CONCLUSION: Our results suggest that the intracellular molecular mechanisms modulated by chronic agomelatine may be partly different from those of traditional antidepressants and involve the time-dependent regulation of MAPK/Erk1/2 and Akt/GSK-3 signalling pathways. This could exert a role in the antidepressant efficacy of the drug.


Assuntos
Acetamidas/farmacologia , Antidepressivos/farmacologia , Lobo Frontal/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Western Blotting , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Lobo Frontal/enzimologia , Hipocampo/enzimologia , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Fatores de Tempo
7.
Int J Neuropsychopharmacol ; 18(3)2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25522407

RESUMO

BACKGROUND: Major depression is a severe mental illness that causes heavy social and economic burdens worldwide. A number of studies have shown that interaction between individual genetic vulnerability and environmental risk factors, such as stress, is crucial in psychiatric pathophysiology. In particular, the experience of stressful events in childhood, such as neglect, abuse, or parental loss, was found to increase the risk for development of depression in adult life. Here, to reproduce the gene x environment interaction, we employed an animal model that combines genetic vulnerability with early-life stress. METHODS: The Flinders Sensitive Line rats (FSL), a validated genetic animal model of depression, and the Flinders Resistant Line (FRL) rats, their controls, were subjected to a standard protocol of maternal separation (MS) from postnatal days 2 to 14. A basal comparison between the two lines for the outcome of the environmental manipulation was performed at postnatal day 73, when the rats were into adulthood. We carried out a global proteomic analysis of purified synaptic terminals (synaptosomes), in order to study a subcellular compartment enriched in proteins involved in synaptic function. Two-dimensional gel electrophoresis (2-DE), mass spectrometry, and bioinformatic analysis were used to analyze proteins and related functional networks that were modulated by genetic susceptibility (FSL vs. FRL) or by exposure to early-life stress (FRL + MS vs. FRL and FSL + MS vs. FSL) RESULTS: We found that, at a synaptic level, mainly proteins and molecular pathways related to energy metabolism and cellular remodeling were dysregulated. CONCLUSIONS: The present results, in line with previous works, suggest that dysfunction of energy metabolism and cytoskeleton dynamics at a synaptic level could be features of stress-related pathologies, in particular major depression.


Assuntos
Depressão/etiologia , Depressão/genética , Metabolismo Energético/genética , Interação Gene-Ambiente , Sinaptofisina/metabolismo , Sinaptossomos/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Biologia Computacional , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Privação Materna , Proteômica/métodos , Ratos
8.
BMC Neurosci ; 14: 75, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23895555

RESUMO

BACKGROUND: Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. RESULTS: Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. CONCLUSIONS: Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release.


Assuntos
Acetamidas/farmacologia , Antidepressivos/farmacologia , Cicloexanóis/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Sinaptossomos/efeitos dos fármacos , Análise de Variância , Animais , Ionóforos de Cálcio/farmacologia , Ionomicina/farmacologia , Masculino , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Cloridrato de Venlafaxina , Ácido gama-Aminobutírico/metabolismo
9.
BMC Psychiatry ; 12: 145, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22989054

RESUMO

BACKGROUND: In recent years, the identification of peripheral biomarkers that are associated with psychiatric diseases, such as Major Depressive Disorder (MDD), has become relevant because these biomarkers may improve the efficiency of the differential diagnosis process and indicate targets for new antidepressant drugs. Two recent candidate genes, ErbB3 and Fgfr1, are growth factors whose mRNA levels have been found to be altered in the leukocytes of patients that are affected by bipolar disorder in a depressive state. On this basis, the aim of the study was to determine if ErbB3 and Fgfr1 mRNA levels could be a biomarkers of MDD. METHODS: We measured by Real Time PCR ErbB3 and Fgfr1 mRNA expression levels in leukocytes of MDD patients compared with controls. Successively, to assess whether ErbB3 mRNA levels were influenced by previous antidepressant treatment we stratified our patients sample in two cohorts, comparing drug-naive versus drug-free patients. Moreover, we evaluated the levels of the transcript in MDD patients after 12 weeks of antidepressant treatment, and in prefrontal cortex of rats stressed and treated with an antidepressant drug of the same class. RESULTS: These results showed that ErbB3 but not Fgfr1 mRNA levels were reduced in leukocytes of MDD patients compared to healthy subjects. Furthermore, ErbB3 levels were not affected by antidepressant treatment in either human or animal models CONCLUSIONS: Our data suggest that ErbB3 might be considered as a biomarker for MDD and that its deficit may underlie the pathophysiology of the disease and is not a consequence of treatment. Moreover the study supports the usefulness of leukocytes as a peripheral system for identifying biomarkers in psychiatric diseases.


Assuntos
Transtorno Depressivo Maior/genética , Leucócitos/metabolismo , RNA Mensageiro/genética , Receptor ErbB-3/genética , Adulto , Animais , Antidepressivos/administração & dosagem , Antidepressivos/efeitos adversos , Antidepressivos/farmacologia , Biomarcadores/sangue , Estudos de Coortes , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/tratamento farmacológico , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
10.
Neuropsychobiology ; 63(3): 160-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21228608

RESUMO

BACKGROUND/AIMS: Compelling evidence would suggest the involvement of the serotonin 2C receptor in the pathophysiology of affective disorders and in the action of antidepressants. We analyzed the time course of 5-HT2C receptor (5-HTR2C) mRNA expression during antidepressant treatment in the prefrontal/frontal cortex (P/FC) and in the hippocampus (HC) of rats chronically treated with fluoxetine (a selective serotonin reuptake inhibitor) and reboxetine (a selective noradrenaline reuptake inhibitor). We also analyzed the 5-HTR2C RNA-editing levels at the sites called A, B, C, C' and D, which are known to modulate 5-HTR2C receptor function. RESULTS: The expression profile of 5-HTR2C mRNA was modified during treatment with both antidepressants. In particular, we found a general down-regulation of 5-HTR2C mRNA expression in P/FC, which became significant after 3 weeks of treatment with both antidepressants and persisted after a fourth week of drug withdrawal (-46% with fluoxetine, -41% with reboxetine, p < 0.05). In HC, however, reboxetine induced significant down-regulation (-56%, p < 0.05) of 5-HTR2C mRNA after 3 weeks, while fluoxetine induced threefold up-regulation (p < 0.01) by the 2nd and 3rd week, returning to the base level after drug withdrawal of both antidepressants. Moreover, the frequency of 5-HTR2C-edited isoforms showed no significant alterations, although analysis of the RNA-editing level at the single editing sites showed small decreases in the C' and D sites induced by reboxetine in P/FC. CONCLUSION: Our results suggest that chronic administration of antidepressants in rats slightly modifies the editing levels of 5-HT2C receptor but has considerable influence on its mRNA expression patterns in a way that is area- and time-specific.


Assuntos
Fluoxetina/farmacologia , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Morfolinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Regulação para Baixo/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Edição de RNA/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reboxetina , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
11.
BMC Neurosci ; 11: 68, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20525261

RESUMO

BACKGROUND: Agomelatine is a melatonergic receptor agonist and a 5HT2C receptor antagonist that has shown antidepressant efficacy. In order to analyze separately the effect of the two receptorial components, rats were chronically treated with agomelatine, melatonin (endogenous melatonergic agonist), or S32006 (5-HT2C antagonist), and then subjected to acute footshock-stress. RESULTS: Only chronic agomelatine, but not melatonin or S32006, completely prevented the stress-induced increase of glutamate release in the rat prefrontal/frontal cortex. CONCLUSIONS: These results suggest a potential synergy between melatonergic and serotonergic pathways in the action of agomelatine.


Assuntos
Acetamidas/farmacologia , Lobo Frontal/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Receptores de Melatonina/metabolismo , Estresse Fisiológico/fisiologia , Análise de Variância , Animais , Depressores do Sistema Nervoso Central/farmacologia , Eletrochoque , Lobo Frontal/metabolismo , Indóis/farmacologia , Melatonina/agonistas , Melatonina/farmacologia , Piridinas/farmacologia , Ratos , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Mol Neurobiol ; 57(1): 393-407, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31364026

RESUMO

Ten to 20% of western countries population suffers from major depression disorder (MDD). Stressful life events represent the main environmental risk factor contributing to the onset of MDD and other stress-related neuropsychiatric disorders. In this regard, investigating brain physiology of stress response underlying the remarkable individual variability in terms of behavioral outcome may uncover stress-vulnerability pathways as a source of candidate targets for conceptually new antidepressant treatments. Serum response factor (SRF) has been addressed as a stress transducer via promoting inherent experience-induced Immediate Early Genes (IEGs) expression in neurons. However, in resting conditions, SRF also represents a transcriptional repressor able to assemble the core LSD1/CoREST/HDAC2 corepressor complex, including demethylase and deacetylase activities. We here show that dominant negative SRF splicing isoform lacking most part of the transactivation domain, namely SRFΔ5, owes its transcriptional repressive behavior to the ability of assembling LSD1/CoREST/HDAC2 corepressor complex meanwhile losing its affinity for transcription-permissive cofactor ELK1. SRFΔ5 is highly expressed in the brain and developmentally regulated. In the light of its activity as negative modulator of dendritic spine density, SRFΔ5 increase along with brain maturation suggests a role in synaptic pruning. Upon acute psychosocial stress, SRFΔ5 isoform transiently increases its levels. Remarkably, when stress is chronically repeated, a different picture occurs where SRF protein becomes stably upregulated in vulnerable mice but not in resilient animals. These data suggest a role for SRFΔ5 that is restricted to acute stress response, while positive modulation of SRF during chronic stress matches the criteria for stress-vulnerability hallmark.


Assuntos
Processamento Alternativo/genética , Proteínas Correpressoras/metabolismo , Histona Desmetilases/metabolismo , Plasticidade Neuronal , Fator de Resposta Sérica/genética , Estresse Fisiológico , Animais , Forma Celular , Espinhas Dendríticas/metabolismo , Células HeLa , Hipocampo/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Fator de Resposta Sérica/metabolismo , Estresse Psicológico/patologia
13.
Int J Neuropsychopharmacol ; 12(10): 1367-81, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19400982

RESUMO

Converging evidence points to adaptive changes in neuroplasticity and gene expression as mediators of therapeutic action of antidepressants. Activation of cAMP response-element binding protein (CREB) and CREB-regulating signalling are considered main effectors in these mechanisms. We analysed the temporal profile of intracellular changes induced by antidepressants, by measuring activation of major CREB-regulating signalling cascades and activation (Ser133 phosphorylation) of CREB. The main aims of the study were to investigate how these different variables are modulated with time, whether stronger activation of signalling cascades corresponds to stronger activation of CREB, and whether these changes are different in distinct brain areas. Rat groups were treated for 1, 2 or 3 wk with the antidepressants fluoxetine or reboxetine; in additional groups drug treatment was followed by a washout week (3+1). Activation of CREB and major effectors in signalling cascades were analysed by Western blot analysis with phospho-antibodies, in nuclear and cytosolic fractions from hippocampus and prefrontal/frontal cortex (P/FC). Surprisingly, CREB activation was already maximal after 1-wk treatment. In hippocampus early and stronger CREB activation was consistent with early and stronger activation of signalling. For both drugs, the profile of activation in P/FC was different from that observed in hippocampus. The results also showed that, contrary to the activatory role of MAP-ERKs and CaM kinase IV, nuclear alphaCaM kinase II was inactivated in parallel with activation of CREB.


Assuntos
Antidepressivos/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Transdução de Sinais/fisiologia , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
14.
Int J Neuropsychopharmacol ; 12(4): 553-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18976544

RESUMO

An animal model of depression combining genetic vulnerability and early-life stress (ELS) was prepared by submitting the Flinders Sensitive Line (FSL) rats to a standard paradigm of maternal separation. We analysed hippocampal synaptic transmission and plasticity in vivo and ionotropic receptors for glutamate in FSL rats, in their controls Flinders Resistant Line (FRL) rats, and in both lines subjected to ELS. A strong inhibition of long-term potentiation (LTP) and lower synaptic expression of NR1 subunit of the NMDA receptor were found in FSL rats. Remarkably, ELS induced a remodelling of synaptic plasticity only in FSL rats, reducing inhibition of LTP; this was accompanied by marked increase of synaptic NR1 subunit and GluR2/3 subunits of AMPA receptors. Chronic treatment with escitalopram inhibited LTP in FRL rats, but this effect was attenuated by prior ELS. The present results suggest that early gene-environment interactions cause lifelong synaptic changes affecting functional and molecular aspects of plasticity, partly reversed by antidepressant treatments.


Assuntos
Depressão/genética , Depressão/patologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Estresse Psicológico/patologia , Sinapses/fisiologia , Animais , Western Blotting , Depressão/psicologia , Estimulação Elétrica , Eletrofisiologia , Meio Ambiente , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Ratos , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/genética , Estresse Psicológico/psicologia , Sinaptossomos/fisiologia
15.
World J Biol Psychiatry ; 20(7): 555-566, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30058429

RESUMO

Objectives: Although stress is considered a primary risk factor for neuropsychiatric disorders, a majority of individuals are resilient to the effects of stress exposure and successfully adapt to adverse life events, while others, the so-called susceptible individuals, may have problems to properly adapt to environmental changes. However, the mechanisms underlying these different responses to stress exposure are poorly understood.Methods: Adult male C57BL/6J mice were exposed to chronic social defeat stress protocol and levels of brain derived neurotrophic factor (BDNF) transcripts and epigenetic modifying enzymes were analysed by real-time PCR in the hippocampus (HPC) and prefrontal cortex (PFC) of susceptible and resilient mice.Results: We found a selective reduction of BDNF-6 transcript in the HPC and an increase of BDNF-4 transcript in the PFC of susceptible mice. Moreover, susceptible mice showed a selective reduction of the g9a mRNA levels in the HPC, while HDAC-5 and DNMT3a mRNA levels were specifically reduced in the PFC.Conclusions: Overall, our results, showing a different expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice, suggest that stress resilience is not simply a lack of activation of stress-related pathways, but is related to the activation of additional different specific mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/enzimologia , Córtex Pré-Frontal/enzimologia , Estresse Psicológico/enzimologia , Adaptação Psicológica , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Suscetibilidade a Doenças , Epigênese Genética , Histona Desacetilases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/genética
16.
Neuropharmacology ; 55(7): 1114-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18682257

RESUMO

One of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic connections and plasticity in the hippocampus and cerebral cortex. Fibroblast growth factor 2 (FGF2) is a growth factor essential for the proper formation of synaptic connections in the cerebral cortex, maturation and survival of catecholamine neurons, and neurogenesis. In this report, we attempted to establish a correlation between antidepressant treatments and FGF2 expression in the cerebral cortex and hippocampus, two brain areas relevant for depression. Desipramine (DMI, 10mg/kg) or fluoxetine (FLU, 5mg/kg) was injected acutely (single injection) or chronically (daily injection for two weeks) in adult rats. Chronic, but not acute, antidepressant treatments increase FGF2 immunoreactivity in neurons of the cerebral cortex and in both astrocytes and neurons of the hippocampus. FGF2 immunoreactivity in the cortex was increased mainly in the cytoplasm of neurons of layer V. Western blot analyses of nuclear and cytosolic extracts from the cortex revealed that both antidepressants increase FGF2 isoforms in the cytosolic extracts and decrease accumulation of FGF2 immunoreactivity in the nucleus. To characterize the anatomical and cellular specificity of antidepressants, we examined FGF-binding protein (FBP), a secreted protein that acts as an extracellular chaperone for FGF2 and enhances its activity. DMI and FLU increased FBP immunoreactivity in both cortical and hippocampal neurons. Our data suggest that FGF2 and FBP may participate in the plastic responses underlying the clinical efficacy of antidepressants.


Assuntos
Antidepressivos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neurônios/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Western Blotting , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Desipramina/farmacologia , Fator 2 de Crescimento de Fibroblastos/química , Fluvoxamina/farmacologia , Imuno-Histoquímica , Isomerismo , Masculino , Neurônios/efeitos dos fármacos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
17.
Neuropsychopharmacology ; 41(13): 3070-3079, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27388329

RESUMO

Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Metionina/genética , Plasticidade Neuronal/genética , Condicionamento Físico Animal/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Valina/genética , Animais , Peso Corporal/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica/genética , Genótipo , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Masculino , Transtornos Mentais/genética , Camundongos , Camundongos Transgênicos , Neurogênese/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Natação/fisiologia
18.
Brain Res ; 1062(1-2): 16-25, 2005 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16263098

RESUMO

Glucocorticoids, given at high-doses, improve recovery of function after spinal cord injury (SCI) in animals. However, side effects combined with a limited efficacy in clinical trials have restricted their usefulness for treatment of SCI patients. Recent studies have shown that incorporation of the nitric oxide releasing moiety into the glucocorticoid structure enhances anti-inflammatory properties and reduces side effects. One compound, a derivative of prednisolone (PRE), (NCX 1015, prednisolone 21 [(4'nitrooxymethyl)benzoate]), has interesting pharmacological properties. Therefore, we investigated its effects on apoptosis and recovery of function in rats after SCI. Rats received subcutaneously vehicle, NCX 1015 or PRE (37 micromol/kg, each) 3.5 h after a standardized thoracic lesion. The treatment was continued once a day for 3 days and the effect of both steroids on apoptosis was examined by immunohistochemistry 24 h after the last injection. NCX 1015 but not PRE reduced TUNEL and activated caspase 3 in both white and ventral gray matter as well as tumor necrosis factor immunoreactivity in ventral horn motorneurons, suggesting that NCX 1015 reduces SCI-induced apoptosis. The effect of NCX 1015 on motor function was then examined by a standard locomotion rating scale (BBB) starting at 1 day after injury and continuing up to 14 days. NCX 1015 improved significantly locomotor activity by 4 days after injury, whereas PRE had an effect equivalent to that of vehicle, thus providing a correlation between the antiapoptotic effect of NCX1015 and its ability to improve recovery of function. The data suggest that NCX 1015 might be a novel experimental therapeutic compound for recovery of function in SCI patients.


Assuntos
Apoptose/efeitos dos fármacos , Glucocorticoides/farmacologia , Prednisolona/análogos & derivados , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Feminino , Atividade Motora/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Prednisolona/farmacologia , Ratos , Ratos Sprague-Dawley
19.
Brain Res Mol Brain Res ; 124(2): 97-104, 2004 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-15135217

RESUMO

Activation of beta-adrenergic receptor (betaAR) increases the synthesis of nerve growth factor (NGF) in the brain and in C6-2B glioma cells. However, in the brain, the betaAR-mediated increase in NGF expression appears to require the presence of glucocorticoids, suggesting that NGF promoter may be sensitive to cAMP and glucocorticoid-dependent transcription factors. We tested this hypothesis by exposing C6-2B glioma cells to dexamethasone (DEX) in combination with agents that increase cAMP levels and examining the DNA binding activity of two cAMP-dependent transcription factors that regulate NGF expression: cAMP responsive element binding protein (CREB) and CCAAT/enhancer binding protein delta (C/EBPdelta). Electrophoretic mobility shift assays revealed that the beta(2)AR agonist clenbuterol (CLE) or high levels of cAMP elicited a time-dependent increase in C/EBPdelta binding activity as well as phosphorylated CREB (P-CREB). When DEX, which per se showed little effect on these transcription factors, was combined with CLE, dibutyryl cAMP or isoproterenol, enhanced induction of P-CREB and C/EBP binding activity as well as NGF mRNA was observed. Moreover, the increase in NGF mRNA in the presence of DEX was prolonged compared to that obtained by CLE or other cAMP inducing agents alone. In fact, NGF mRNA levels remained significantly elevated at least for 24 h. These studies suggest that the synergistic effect of DEX on the induction of NGF mRNA may include the ability of this glucocorticoid to potentiate the betaAR-mediated induction of transcription factors.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Dexametasona/farmacologia , Fator de Crescimento Neural/genética , Neurônios/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT , Proteínas Estimuladoras de Ligação a CCAAT/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sinergismo Farmacológico , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Receptores Adrenérgicos beta/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
Expert Opin Investig Drugs ; 22(2): 217-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23253113

RESUMO

INTRODUCTION: Mood and anxiety disorders are among the major causes of disability worldwide. Despite clear need for better therapies, efforts to develop novel drugs have been relatively unsuccessful. One major reason is lack of translation into neuropsychopharmacology of the impressive recent array of knowledge accrued by clinical and preclinical researches on the brain. Here focus is on epigenetics mechanisms, including microRNAs, which seem particularly promising for the identification of new targets for alternative pharmacological approaches. AREAS COVERED: First, the current knowledge about epigenetic mechanisms, including DNA methylation, posttranslational modification of histone proteins, focusing on histone methylation and acetylation, and posttranscriptional modulation of gene expression by microRNAs is described. Then evidence showing involvement of epigenetics and microRNAs in the pathophysiology of mood and anxiety disorders as well as evidence showing that some of the currently employed antidepressants and mood stabilizers also affect epigenetic and microRNA mechanisms are reviewed. Finally current evidence and novel approaches in favor of drugs regulating epigenetic and microRNA mechanisms as potential therapeutics for these disorders are discussed. EXPERT OPINION: Although still in its infancy, research investigating the effects of pharmacological modulation of epigenetic and microRNA mechanisms in neuropsychiatric disorders continues to provide encouraging findings, suggesting new avenues for treatment of mood and anxiety disorders.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , MicroRNAs/genética , Transtornos do Humor/tratamento farmacológico , Neuropsicologia , Psicotrópicos/uso terapêutico , Animais , Transtornos de Ansiedade/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Histonas/genética , Histonas/metabolismo , Humanos , Transtornos do Humor/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Psicotrópicos/administração & dosagem , Psicotrópicos/efeitos adversos , Psicotrópicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa