RESUMO
Cancer is recognized as one of the major causes of mortality, however, early-stage detection can increase the survival chance greatly. It is recognized that folate receptors are gradually overexpressed in the cellular membrane with the progress of cancer from stage 1 to stage 4. Utilizing the fact, herein, developed a porous silica nanoparticle system C1@SiO2-FA-NP; A) impregnated with thermodynamically stable Mn(II) complex (1) molecules within the core of the nanoparticle, and B) surface functionalized with folate units. It exhibited a high longitudinal relaxivity value r1 = 21.45 mM-1s-1 that substantially increased to r1 = 40.97 mM-1s-1 in the presence of 0.67 mM concentration of BSA under the physiological condition. The in vitro fluorescent images after surface conjugation of C1@SiO2-FA-NP with FITC (fluorescein isothiocyanate) buttressed the inclusion of the nanoparticle exclusively within the cancerous HeLa cells than that of healthy HEK293 cells. The importance of the surface-bound folate unit in the nanoparticle is further established by comparing the fluorescent images of HeLa cells in the absence of the group. Finally, the applicability of C1@SiO2-FA-NP as the T1-weighted MRI contrast agent for early-stage cancer diagnosis is established within C57BL/6 mice after infecting the mice with HeLa cells.
RESUMO
Since the finding of nephrogenic systemic fibrosis (NFS) in patients with renal impairment and the long-term accumulation of Gd(III) ions in the central nervous system, the search for nongadolinium ion-based MRI contrast agents made of nutrient metal ions has drawn paramount attention. In this context, the development of Mn(II)-based MRI contrast agents has been a subject of interest for the last few decades. Herein, we report a pentadentate ligand (Li2[BenzPic2]) composed of two picolinate moieties and a rigid 1,2,3,4-tetrahydroquinazoline unit and the corresponding bis(aquated) Mn(II) complex (Complex 1). The complex exhibited high thermodynamic stability (log Kcond = 11.62) and kinetic inertness similar to that of the clinically approved Gd(III)-based contrast agent Magnevist. Complex 1 exerted longitudinal relaxivity (r1) of 5.32 mM-1 s-1 at 1.41 T, 37 °C, pH 7.4, and it increased by 3.6-fold in the presence of serum albumin protein, confirming a substantial rigidifying interaction (albumin association constant KA = 1.66 × 103 M-1) between the protein and the amphiphilic (log P = -0.45) contrast agent. An intravenous dose of 0.08 mmol/kg in a healthy mouse, excellent MRI signal intensity enhancement in the vasculature of the mouse liver, and brightened images of the gallbladder, kidney, and liver were realized.
Assuntos
Meios de Contraste , Gadolínio DTPA , Humanos , Animais , Camundongos , Albuminas , Imageamento por Ressonância Magnética , ÍonsRESUMO
Type-1 and type-2 diabetes mellitus are metabolic disorders governed by the functional efficiency of pancreatic ß-cells. The activities of the cells toward insulin production, storage, and secretion are accompanied by Zn(II) ions. Thus, for non-invasive pathology of the cell, developing Zn(II) ion-responsive MRI-contrast agents has earned considerable interest. In this report, we have synthesized a seven-coordinate, mono(aquated) Mn(II) complex (1), which is impregnated within a porous silica nanosphere of size 13.2 nm to engender the Mn(II)-based MRI contrast agent, complex 1@SiO2NP. The surface functionalization of the nanosphere by the Py2Pic organic moiety for the selective binding of Zn(II)-ions yields complex 1@SiO2-Py2PicNP, which exhibits r1 = 13.19 mM-1 s-1. The relaxivity value elevates to 20.38 mM-1 s-1 in the presence of 0.6 mM BSA protein at pH 7.4. Gratifyingly, r1 increases linearly with the increase of Zn(II) ion concentration and reaches 39.01 mM-1 s-1 in the presence of a 40 fold excess of the ions. Thus, Zn(II)-responsive contrast enhancement in vivo is envisaged by employing the nanoparticle. Indeed, a contrast enhancement in the pancreas is observed when complex 1@SiO2-Py2PicNP and a glucose stimulus are administered in fasted healthy C57BL/6 mice at 7 T.
Assuntos
Nanopartículas , Dióxido de Silício , Camundongos , Animais , Dióxido de Silício/metabolismo , Meios de Contraste/metabolismo , Porosidade , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética/métodos , Pâncreas/metabolismo , Zinco/metabolismo , Íons/metabolismoRESUMO
Contrast-agent enhanced magnetic resonance imaging (MRI) has been under continuous investigation for the conspicuous imaging of lesions and the early-stage detection of tumors. To achieve the development of a T1-weighted contrast agent with a high relaxivity value, herein, porous silica nanoparticles that had internalized about 20 aquated cationic Gd(III) complexes (1) of the hexadentate hydroxyethyl-appended picolinate-based ligand H2hbda were demonstrated. Complex 1 exhibited a longitudinal relaxivity value per mM Gd(III) ions, r1, of 9.05 mM-1 s-1 (pH 7.4, 37 °C, 1.41 T), which increased to 86.41 mM-1 s-1 because of the grafting of complex 1 in the inner core of porous silica nanospheres through electrostatic interactions between the anionic silica surface and the cationic complex 1 molecules. A further augmentation in the relaxivity value to 118.32 mM-1 s-1 was realized because of the interaction of the complex 1@SiO2NPs with serum albumin protein. The synthesized nanosystem was impervious to physiologically available anions (HPO42- and HCO31-) and also kinetically inert, as evidenced via a transmetallation experiment in the presence of Zn(II) ions. The developed complex-incorporated nanomaterial was bio- and hemo-compatible. Cellular uptake measurements employing HeLa cells and the concentration-dependent enhancement in the brightness of in vitro phantom images, recorded under a clinical scanner at 1.5 T, demonstrated that the developed biocompatible 1@SiO2NP complex has promising diagnostic applications as a T1-weighted MRI contrast agent.
Assuntos
Meios de Contraste , Nanopartículas , Meios de Contraste/química , Células HeLa , Humanos , Ligantes , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Porosidade , Albumina Sérica , Dióxido de Silício/química , Eletricidade EstáticaRESUMO
Magnetic resonance imaging has emerged as an indispensable imaging modality for the early-stage diagnosis of many diseases. The imaging in the presence of a contrast agent is always advantageous, as it mitigates the low-sensitivity issue of the measurements and provides excellent contrast in the acquired images even in a short acquisition time. However, the stability and high relaxivity of the contrast agents remained a challenge. Here, molecules of a mononuclear, mono(aquated), thermodynamically stable [log KMnL = 14.80(7) and pMn = 8.97] Mn(II)-complex (1), based on a hexadentate pyridine-picolinate unit-containing ligand (H2PyDPA), were confined within a porous silica nanosphere in a noncovalent fashion to render a stable nanosystem, complex 1@SiO2NP. The entrapped complex 1 (complex 1@SiO2) exhibited r1 = 8.46 mM-1 s-1 and r2 = 33.15 mM-1 s-1 at pH = 7.4, 25 °C, and 1.41 T in N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid buffer. The values were about 2.9 times higher compared to the free (unentrapped)-complex 1 molecules. The synthesized complex 1@SiO2NP interacted significantly with albumin protein and consequently boosted both the relaxivity values to r1 = 24.76 mM-1 s-1 and r2 = 63.96 mM-1 s-1 at pH = 7.4, 37 °C, and 1.41 T. The kinetic inertness of the entrapped molecules was established by recognizing no appreciable change in the r1 value upon challenging complex 1@SiO2NP with 30 and 40 times excess of Zn(II) ions at pH 6 and 25 °C. The water molecule coordinated to the Mn(II) ion in complex 1@SiO2 was also impervious to the physiologically relevant anions (bicarbonate, biphosphate, and citrate) and pH of the medium. Thus, it ensured the availability of the inner-coordination site of complex 1 for the coordination of water molecules in the biological media. The concentration-dependent changes in image intensities in T1- and T2-weighted phantom images and uptake of the nanoparticles by the HeLa cell put forward the biocompatible complex 1@SiO2NP as a potential dual-mode MRI contrast agent, an alternative to Gd(III)-containing contrast agents.