Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Prog ; 107(3): 368504241263406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042945

RESUMO

Eco-driving has garnered considerable research attention owing to its potential socio-economic impact, including enhanced public health and mitigated climate change effects through the reduction of greenhouse gas emissions. With an expectation of more autonomous vehicles (AVs) on the road, an eco-driving strategy in hybrid traffic networks encompassing AV and human-driven vehicles (HDVs) with the coordination of traffic lights is a challenging task. The challenge is partially due to the insufficient infrastructure for collecting, transmitting, and sharing real-time traffic data among vehicles, facilities, and traffic control centers, and the following decision-making of agents involved in traffic control. Additionally, the intricate nature of the existing traffic network, with its diverse array of vehicles and facilities, contributes to the challenge by hindering the development of a mathematical model for accurately characterizing the traffic network. In this study, we utilized the Simulation of Urban Mobility (SUMO) simulator to tackle the first challenge through computational analysis. To address the second challenge, we employed a model-free reinforcement learning (RL) algorithm, proximal policy optimization, to decide the actions of AV and traffic light signals in a traffic network. A novel eco-driving strategy was proposed by introducing different percentages of AV into the traffic flow and collaborating with traffic light signals using RL to control the overall speed of the vehicles, resulting in improved fuel consumption efficiency. Average rewards with different penetration rates of AV (5%, 10%, and 20% of total vehicles) were compared to the situation without any AV in the traffic flow (0% penetration rate). The 10% penetration rate of AV showed a minimum time of convergence to achieve average reward, leading to a significant reduction in fuel consumption and total delay of all vehicles.

2.
Front Pain Res (Lausanne) ; 4: 1274811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028432

RESUMO

Non-neuronal cells constitute 90%-95% of sensory ganglia. These cells, especially glial and immune cells, play critical roles in the modulation of sensory neurons. This study aimed to identify, profile, and summarize the types of trigeminal ganglion (TG) non-neuronal cells in naïve male mice using published and our own data generated by single-cell RNA sequencing, flow cytometry, and immunohistochemistry. TG has five types of non-neuronal cells, namely, glial, fibroblasts, smooth muscle, endothelial, and immune cells. There is an agreement among publications for glial, fibroblasts, smooth muscle, and endothelial cells. Based on gene profiles, glial cells were classified as myelinated and non-myelinated Schwann cells and satellite glial cells. Mpz has dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2+ fibroblasts located throughout TG were distinguished. TG smooth muscle and endothelial cells in the blood vessels were detected using well-defined markers. Our study reported three types of macrophages (Mph) and four types of neutrophils (Neu) in TG. Mph were located in the neuronal bodies and nerve fibers and were sub-grouped by unique transcriptomic profiles with Ccr2, Cx3cr1, and Iba1 as markers. A comparison of databases showed that type 1 Mph is similar to choroid plexus-low (CPlo) border-associated Mph (BAMs). Type 2 Mph has the highest prediction score with CPhi BAMs, while type 3 Mph is distinct. S100a8+ Neu were located in the dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r, Ly6G, Ngp, Elane, and Mpo. Integrative analysis of published datasets indicated that Neu-1, Neu-2, and Neu-3 are similar to the brain Neu-1 group, while Neu-4 has a resemblance to the monocyte-derived cells. Overall, the generated and summarized datasets on non-neuronal TG cells showed a unique composition of myeloid cell types in TG and could provide essential and fundamental information for studies on cell plasticity, interactomic networks between neurons and non-neuronal cells, and function during a variety of pain conditions in the head and neck regions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa