Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Immune Network ; : e7-2024.
Artigo em Inglês | WPRIM | ID: wpr-1043015

RESUMO

Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019.In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virusinfected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

2.
Immune Network ; : e43-2023.
Artigo em Inglês | WPRIM | ID: wpr-1040781

RESUMO

The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has provided insights for updating current coronavirus disease 2019 (COVID-19) vaccines. We examined the neutralizing activity of Abs induced by a BA.4/5-containing bivalent mRNA vaccine against Omicron subvariants BN.1 and XBB.1.5. We recruited 40 individuals who had received a monovalent COVID-19 booster dose after a primary series of COVID-19 vaccinations and will be vaccinated with a BA.4/5-containing bivalent vaccine. Sera were collected before vaccination, one month after, and three months after a bivalent booster.Neutralizing Ab (nAb) titers were measured against ancestral SARS-CoV-2 and Omicron subvariants BA.5, BN.1, and XBB.1.5. BA.4/5-containing bivalent vaccination significantly boosted nAb levels against both ancestral SARS-CoV-2 and Omicron subvariants. Participants with a history of SARS-CoV-2 infection had higher nAb titers against all examined strains than the infection-naïve group. NAb titers against BN.1 and XBB.1.5 were lower than those against the ancestral SARS-CoV-2 and BA.5 strains. These results suggest that COVID-19 vaccinations specifically targeting emerging Omicron subvariants, such as XBB.1.5, may be required to ensure better protection against SARS-CoV-2 infection, especially in high-risk groups.

3.
Artigo em Inglês | WPRIM | ID: wpr-925957

RESUMO

Background@#The potential for a nosocomial outbreak of coronavirus disease 2019 (COVID-19) from a fully vaccinated individual is largely unknown. @*Methods@#In October 2021, during the time when the delta variant was dominant, a nosocomial outbreak of COVID-19 occurred in two wards in a tertiary care hospital in Seoul, Korea. We performed airflow investigations and whole-genome sequencing (WGS) of the virus. @*Results@#The index patient developed symptoms 1 day after admission, and was diagnosed with COVID-19 on day 4 post-admission. He was fully vaccinated (ChAdOx1 nCoV-19) 2 months before the diagnosis. Three inpatients and a caregiver in the same room, two inpatients in an adjacent room, two inpatients in rooms remote from the index room, and one nurse on the ward tested positive. Also, two resident doctors who stayed in an on-call room located on the same ward tested positive (although they had no close contact), as well as a caregiver who stayed on an adjacent ward, and a healthcare worker who had casual contact with this caregiver. Samples from five individuals were available for WGS, and all showed ≤ 1 single-nucleotide polymorphism difference. CCTV footage showed that the index case walked frequently in the corridors of two wards. An airflow study showed that the air from the corridor flowed into the resident on-call room, driven by an air circulator that was always turned on. @*Conclusion@#Transmission of severe acute respiratory syndrome coronavirus 2 from a fully vaccinated index occurred rapidly via the wards and on-call room. Care must be taken to not use equipment that can change the airflow.

4.
Laboratory Animal Research ; : 119-127, 2022.
Artigo em Inglês | WPRIM | ID: wpr-938815

RESUMO

Background@#As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. @*Results@#In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. @*Conclusions@#This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.

5.
Artigo em Inglês | WPRIM | ID: wpr-889607

RESUMO

The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.

6.
Artigo em Inglês | WPRIM | ID: wpr-889608

RESUMO

Novel coronavirus (SARS-CoV-2) has caused more than 100 million confirmed cases of human infectious disease (COVID-19) since December 2019 to paralyze our global community. However, only limited access has been allowed to COVID-19 vaccines and antiviral treatment options. Here, we report the efficacy of the anticancer drug pralatrexate against SARS-CoV-2. In Vero and human lung epithelial Calu-3 cells, pralatrexate reduced viral RNA copies of SARS-CoV-2 without detectable cytotoxicity, and viral replication was successfully inhibited in a dose-dependent manner. In a time-to-addition assay, pralatrexate treatment at almost half a day after infection also exhibited inhibitory effects on the replication of SARS-CoV-2 in Calu-3 cells. Taken together, these results suggest the potential of pralatrexate as a drug repurposing COVID-19 remedy.

7.
Artigo em Inglês | WPRIM | ID: wpr-897311

RESUMO

The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.

8.
Artigo em Inglês | WPRIM | ID: wpr-897312

RESUMO

Novel coronavirus (SARS-CoV-2) has caused more than 100 million confirmed cases of human infectious disease (COVID-19) since December 2019 to paralyze our global community. However, only limited access has been allowed to COVID-19 vaccines and antiviral treatment options. Here, we report the efficacy of the anticancer drug pralatrexate against SARS-CoV-2. In Vero and human lung epithelial Calu-3 cells, pralatrexate reduced viral RNA copies of SARS-CoV-2 without detectable cytotoxicity, and viral replication was successfully inhibited in a dose-dependent manner. In a time-to-addition assay, pralatrexate treatment at almost half a day after infection also exhibited inhibitory effects on the replication of SARS-CoV-2 in Calu-3 cells. Taken together, these results suggest the potential of pralatrexate as a drug repurposing COVID-19 remedy.

9.
Artigo em Inglês | WPRIM | ID: wpr-892176

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission among non-close contacts is not infrequent. We evaluated the proportion and circumstances of individuals to whom SARS-CoV-2 was transmitted without close contact with the index patient in a nosocomial outbreak in a tertiary care hospital in Korea. From March 2020 to March 2021, there were 36 secondary cases from 14 SARS-CoV-2 infected individuals. Of the 36 secondary cases, 26 (72%) had been classified as close contact and the remaining 10 (28%) were classified as non-close contact. Of the 10 non-close contact, 4 had short conversations with both individuals masked, 4 shared a space without any conversation with both masked, and the remaining 2 entered the space after the index had left. At least one quarter of SARSCoV-2 transmissions occurred among non-close contacts. The definition of close contact for SARS-CoV-2 exposure based on the mode of droplet transmission should be revised to reflect the airborne nature of SARS-CoV-2 transmission.

10.
Yonsei Medical Journal ; : 584-592, 2021.
Artigo em Inglês | WPRIM | ID: wpr-896539

RESUMO

Purpose@#Neutralizing antibodies (NAbs) have been considered effective in preventing and treating viral infections. However, until now, the duration and clinical implications of antibody-mediated nature immunity in Koreans have remained unknown.Therefore, we examined NAbs levels and clinical characteristics in recovered coronavirus disease 2019 (COVID-19) patients. @*Materials and Methods@#Blood samples were collected from 143 adult patients who had been diagnosed with and had recovered from COVID-19 from February to March in 2020 at a tertiary-care university-affiliated hospital in Daegu, Korea. A plaque reduction neutralization test was conducted to analyze NAb titers. Individualized questionnaires were used to identify patient clinical information. @*Results@#The median number of days from symptom onset to the blood collection date was 109.0 (104.0; 115.0). The NAb titers ranged from 10 to 2560. The median NAb titer value was 40. Of the 143 patients, 68 (47.6%) patients had NAb titers ≥80, and 31 (21.7%) patients had NAb titers ≥160. The higher the age or disease severity, the higher the NAb titer. In univariate logistic regression, statistically significant predictors of high NAb titers (≥80) were age, myalgia, nausea or vomiting, dyspnea, and disease severity (p<0.05). Multivariable logistic regression showed that age ≥50 years (p=0.013) and moderate or higher disease severity (p<0.001) were factors associated with high NAb titers (≥80). None of the patients had reinfection of COVID-19. @*Conclusion@#All recovered patients were found to have NAbs regardless of the NAb titers maintained by natural immunity. Age and disease severity during COVID-19 infection were associated with high NAb titers.

11.
Artigo em Inglês | WPRIM | ID: wpr-899880

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission among non-close contacts is not infrequent. We evaluated the proportion and circumstances of individuals to whom SARS-CoV-2 was transmitted without close contact with the index patient in a nosocomial outbreak in a tertiary care hospital in Korea. From March 2020 to March 2021, there were 36 secondary cases from 14 SARS-CoV-2 infected individuals. Of the 36 secondary cases, 26 (72%) had been classified as close contact and the remaining 10 (28%) were classified as non-close contact. Of the 10 non-close contact, 4 had short conversations with both individuals masked, 4 shared a space without any conversation with both masked, and the remaining 2 entered the space after the index had left. At least one quarter of SARSCoV-2 transmissions occurred among non-close contacts. The definition of close contact for SARS-CoV-2 exposure based on the mode of droplet transmission should be revised to reflect the airborne nature of SARS-CoV-2 transmission.

12.
Yonsei Medical Journal ; : 584-592, 2021.
Artigo em Inglês | WPRIM | ID: wpr-904243

RESUMO

Purpose@#Neutralizing antibodies (NAbs) have been considered effective in preventing and treating viral infections. However, until now, the duration and clinical implications of antibody-mediated nature immunity in Koreans have remained unknown.Therefore, we examined NAbs levels and clinical characteristics in recovered coronavirus disease 2019 (COVID-19) patients. @*Materials and Methods@#Blood samples were collected from 143 adult patients who had been diagnosed with and had recovered from COVID-19 from February to March in 2020 at a tertiary-care university-affiliated hospital in Daegu, Korea. A plaque reduction neutralization test was conducted to analyze NAb titers. Individualized questionnaires were used to identify patient clinical information. @*Results@#The median number of days from symptom onset to the blood collection date was 109.0 (104.0; 115.0). The NAb titers ranged from 10 to 2560. The median NAb titer value was 40. Of the 143 patients, 68 (47.6%) patients had NAb titers ≥80, and 31 (21.7%) patients had NAb titers ≥160. The higher the age or disease severity, the higher the NAb titer. In univariate logistic regression, statistically significant predictors of high NAb titers (≥80) were age, myalgia, nausea or vomiting, dyspnea, and disease severity (p<0.05). Multivariable logistic regression showed that age ≥50 years (p=0.013) and moderate or higher disease severity (p<0.001) were factors associated with high NAb titers (≥80). None of the patients had reinfection of COVID-19. @*Conclusion@#All recovered patients were found to have NAbs regardless of the NAb titers maintained by natural immunity. Age and disease severity during COVID-19 infection were associated with high NAb titers.

13.
Infection and Chemotherapy ; : 332-341, 2021.
Artigo em Inglês | WPRIM | ID: wpr-890898

RESUMO

Background@#Coronavirus disease 2019 (COVID-19) outbreaks occur in hospitals in many parts of the world. In hospital settings, the possibility of airborne transmission needs to be investigated thoroughly. @*Materials and Methods@#There was a nosocomial outbreak of COVID-19 in a hematologic ward in a tertiary hospital, Seoul, Korea. We found 11 patients and guardians with COVID-19 through vigorous contact tracing and closed-circuit television monitoring. We found one patient who probably had acquired COVID-19 through airborne-transmission. We performed airflow investigation with simulation software, whole-genome sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). @*Results@#Of the nine individuals with COVID-19 who had been in the hematologic ward, six stayed in one multi-patient room (Room 36), and other three stayed in different rooms (Room 1, 34, 35). Guardian in room 35 was close contact to cases in room 36, and patient in room 34 used the shared bathroom for teeth brushing 40 minutes after index used.Airflow simulation revealed that air was spread from the bathroom to the adjacent room 1 while patient in room 1 did not used the shared bathroom. Airflow was associated with poor ventilation in shared bathroom due to dysfunctioning air-exhaust, grill on the door of shared bathroom and the unintended negative pressure of adjacent room. @*Conclusion@#Transmission of SARS-CoV-2 in the hematologic ward occurred rapidly in the multi-patient room and shared bathroom settings. In addition, there was a case of possible airborne transmission due to unexpected airflow.

14.
Infection and Chemotherapy ; : 332-341, 2021.
Artigo em Inglês | WPRIM | ID: wpr-898602

RESUMO

Background@#Coronavirus disease 2019 (COVID-19) outbreaks occur in hospitals in many parts of the world. In hospital settings, the possibility of airborne transmission needs to be investigated thoroughly. @*Materials and Methods@#There was a nosocomial outbreak of COVID-19 in a hematologic ward in a tertiary hospital, Seoul, Korea. We found 11 patients and guardians with COVID-19 through vigorous contact tracing and closed-circuit television monitoring. We found one patient who probably had acquired COVID-19 through airborne-transmission. We performed airflow investigation with simulation software, whole-genome sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). @*Results@#Of the nine individuals with COVID-19 who had been in the hematologic ward, six stayed in one multi-patient room (Room 36), and other three stayed in different rooms (Room 1, 34, 35). Guardian in room 35 was close contact to cases in room 36, and patient in room 34 used the shared bathroom for teeth brushing 40 minutes after index used.Airflow simulation revealed that air was spread from the bathroom to the adjacent room 1 while patient in room 1 did not used the shared bathroom. Airflow was associated with poor ventilation in shared bathroom due to dysfunctioning air-exhaust, grill on the door of shared bathroom and the unintended negative pressure of adjacent room. @*Conclusion@#Transmission of SARS-CoV-2 in the hematologic ward occurred rapidly in the multi-patient room and shared bathroom settings. In addition, there was a case of possible airborne transmission due to unexpected airflow.

15.
Artigo | WPRIM | ID: wpr-836895

RESUMO

Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.

16.
Artigo em Inglês | WPRIM | ID: wpr-898911

RESUMO

As of September 2020, SARS-CoV-2 has infected over 30 million people worldwide, and the death toll has now risen to 950,000. Given that Povidone-iodine (PVP-I) had consistently been showing the virucidal efficacy against various types of viruses, such as SARS-CoV, MERS-CoV, and Ebola, we conducted this study to figure out the virucidal effect against SARS-CoV-2 by using a viral plaque assay. We performed Kill-Time assays to assess the viral inactivation of SARS-CoV-2 contaminants after the application of the PVP-I product (Betadine® Throat Spray, PVP-I 0.45%). This test consisted of clean and dirty conditions and was designed to check the viral titers at a contact time of 60 seconds, which were evaluated by plaque-reduction rates in Vero cells. This PVP-I product fully achieved ≥4 log 10 reductions in viral titers under both clean and dirty conditions. This level of reduction, ≥4 log 10 (99.99%), in viral titers presented to be effective in terms of virucidal efficacy, according to the European standards, EN14476. This study revealed the virucidal efficacy of Betadine® Throat Spray against SARS-CoV-2 virus. Given that the convenience and availability of this product, we think that it may contribute to inhibit viral infection and transmissibility as an active type of personal protective equipment (PPE) by managing the hygiene of patients and medical professionals.

17.
Artigo em Inglês | WPRIM | ID: wpr-891207

RESUMO

As of September 2020, SARS-CoV-2 has infected over 30 million people worldwide, and the death toll has now risen to 950,000. Given that Povidone-iodine (PVP-I) had consistently been showing the virucidal efficacy against various types of viruses, such as SARS-CoV, MERS-CoV, and Ebola, we conducted this study to figure out the virucidal effect against SARS-CoV-2 by using a viral plaque assay. We performed Kill-Time assays to assess the viral inactivation of SARS-CoV-2 contaminants after the application of the PVP-I product (Betadine® Throat Spray, PVP-I 0.45%). This test consisted of clean and dirty conditions and was designed to check the viral titers at a contact time of 60 seconds, which were evaluated by plaque-reduction rates in Vero cells. This PVP-I product fully achieved ≥4 log 10 reductions in viral titers under both clean and dirty conditions. This level of reduction, ≥4 log 10 (99.99%), in viral titers presented to be effective in terms of virucidal efficacy, according to the European standards, EN14476. This study revealed the virucidal efficacy of Betadine® Throat Spray against SARS-CoV-2 virus. Given that the convenience and availability of this product, we think that it may contribute to inhibit viral infection and transmissibility as an active type of personal protective equipment (PPE) by managing the hygiene of patients and medical professionals.

18.
Artigo em Inglês | WPRIM | ID: wpr-758906

RESUMO

The 4a and 4b proteins of the Middle East respiratory syndrome coronavirus (MERS-CoV) have been described for their antagonism on host innate immunity. However, unlike clustering patterns of the complete gene sequences of human and camel MERS-CoVs, the 4a and 4b protein coding regions did not constitute species-specific phylogenetic groups. Moreover, given the estimated evolutionary rates of the complete, 4a, and 4b gene sequences, the 4a and 4b proteins might be less affected by species-specific innate immune pressures. These results suggest that the 4a and 4b proteins of MERS-CoV may function against host innate immunity in a manner independent of host species and/or evolutionary clustering patterns.


Assuntos
Humanos , Camelus , Codificação Clínica , Infecções por Coronavirus , Evolução Molecular , Imunidade Inata , Coronavírus da Síndrome Respiratória do Oriente Médio , Oriente Médio , Fases de Leitura Aberta , Filogenia , Zoonoses
19.
20.
Artigo em Inglês | WPRIM | ID: wpr-714742

RESUMO

Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express α- and β-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the ‘defensin vaccine’ concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.


Assuntos
Humanos , Antivirais , Defensinas , Vírus da Dengue , HIV , Imunidade Inata , Vírus da Influenza A , Modelos Animais , Peptídeos , Vírus Sinciciais Respiratórios , Vírus de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa