RESUMO
2'-O-methylation (2OM) is the most common post-transcriptional modification of RNA. It plays a crucial role in RNA splicing, RNA stability and innate immunity. Despite advances in high-throughput detection, the chemical stability of 2OM makes it difficult to detect and map in messenger RNA. Therefore, bioinformatics tools have been developed using machine learning (ML) algorithms to identify 2OM sites. These tools have made significant progress, but their performances remain unsatisfactory and need further improvement. In this study, we introduced H2Opred, a novel hybrid deep learning (HDL) model for accurately identifying 2OM sites in human RNA. Notably, this is the first application of HDL in developing four nucleotide-specific models [adenine (A2OM), cytosine (C2OM), guanine (G2OM) and uracil (U2OM)] as well as a generic model (N2OM). H2Opred incorporated both stacked 1D convolutional neural network (1D-CNN) blocks and stacked attention-based bidirectional gated recurrent unit (Bi-GRU-Att) blocks. 1D-CNN blocks learned effective feature representations from 14 conventional descriptors, while Bi-GRU-Att blocks learned feature representations from five natural language processing-based embeddings extracted from RNA sequences. H2Opred integrated these feature representations to make the final prediction. Rigorous cross-validation analysis demonstrated that H2Opred consistently outperforms conventional ML-based single-feature models on five different datasets. Moreover, the generic model of H2Opred demonstrated a remarkable performance on both training and testing datasets, significantly outperforming the existing predictor and other four nucleotide-specific H2Opred models. To enhance accessibility and usability, we have deployed a user-friendly web server for H2Opred, accessible at https://balalab-skku.org/H2Opred/. This platform will serve as an invaluable tool for accurately predicting 2OM sites within human RNA, thereby facilitating broader applications in relevant research endeavors.
Assuntos
Aprendizado Profundo , RNA , Humanos , RNA/genética , Sequência de Bases , Nucleotídeos , MetilaçãoRESUMO
The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis. Currently, available computational tools for predicting these sites lack accuracy and effectiveness. In this study, we designed an innovative meta-learning model, Meta-Learning for Serine/Threonine Phosphorylation (MeL-STPhos), to precisely identify protein phosphorylation sites. We initially performed a comprehensive assessment of 29 unique sequence-derived features, establishing prediction models for each using 14 renowned machine learning methods, ranging from traditional classifiers to advanced deep learning algorithms. We then selected the most effective model for each feature by integrating the predicted values. Rigorous feature selection strategies were employed to identify the optimal base models and classifier(s) for each cell-specific dataset. To the best of our knowledge, this is the first study to report two cell-specific models and a generic model for phosphorylation site prediction by utilizing an extensive range of sequence-derived features and machine learning algorithms. Extensive cross-validation and independent testing revealed that MeL-STPhos surpasses existing state-of-the-art tools for phosphorylation site prediction. We also developed a publicly accessible platform at https://balalab-skku.org/MeL-STPhos. We believe that MeL-STPhos will serve as a valuable tool for accelerating the discovery of serine/threonine phosphorylation sites and elucidating their role in post-translational regulation.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fosforilação , SARS-CoV-2/metabolismo , Serina/metabolismo , Treonina/metabolismoRESUMO
BACKGROUND: Cell-penetrating peptides (CPPs) have received considerable attention as a means of transporting pharmacologically active molecules into living cells without damaging the cell membrane, and thus hold great promise as future therapeutics. Recently, several machine learning-based algorithms have been proposed for predicting CPPs. However, most existing predictive methods do not consider the agreement (disagreement) between similar (dissimilar) CPPs and depend heavily on expert knowledge-based handcrafted features. RESULTS: In this study, we present SiameseCPP, a novel deep learning framework for automated CPPs prediction. SiameseCPP learns discriminative representations of CPPs based on a well-pretrained model and a Siamese neural network consisting of a transformer and gated recurrent units. Contrastive learning is used for the first time to build a CPP predictive model. Comprehensive experiments demonstrate that our proposed SiameseCPP is superior to existing baseline models for predicting CPPs. Moreover, SiameseCPP also achieves good performance on other functional peptide datasets, exhibiting satisfactory generalization ability.
Assuntos
Peptídeos Penetradores de Células , Peptídeos Penetradores de Células/metabolismo , Algoritmos , Transporte Biológico , Redes Neurais de Computação , Aprendizado de MáquinaRESUMO
RNA modification serves as a pivotal component in numerous biological processes. Among the prevalent modifications, 5-methylcytosine (m5C) significantly influences mRNA export, translation efficiency and cell differentiation and are also associated with human diseases, including Alzheimer's disease, autoimmune disease, cancer, and cardiovascular diseases. Identification of m5C is critically responsible for understanding the RNA modification mechanisms and the epigenetic regulation of associated diseases. However, the large-scale experimental identification of m5C present significant challenges due to labor intensity and time requirements. Several computational tools, using machine learning, have been developed to supplement experimental methods, but identifying these sites lack accuracy and efficiency. In this study, we introduce a new predictor, MLm5C, for precise prediction of m5C sites using sequence data. Briefly, we evaluated eleven RNA sequence-derived features with four basic machine learning algorithms to generate baseline models. From these 44 models, we ranked them based on their performance and subsequently stacked the Top 20 baseline models as the best model, named MLm5C. The MLm5C outperformed the-state-of-the-art predictors. Notably, the optimization of the sequence length surrounding the modification sites significantly improved the prediction performance. MLm5C is an invaluable tool in accelerating the detection of m5C sites within the human genome, thereby facilitating in the characterization of their roles in post-transcriptional regulation.
Assuntos
5-Metilcitosina , Aprendizado de Máquina , RNA , Humanos , 5-Metilcitosina/metabolismo , 5-Metilcitosina/química , RNA/genética , RNA/química , RNA/metabolismo , Biologia Computacional/métodos , Processamento Pós-Transcricional do RNA , AlgoritmosRESUMO
SARS-CoV-2's global spread has instigated a critical health and economic emergency, impacting countless individuals. Understanding the virus's phosphorylation sites is vital to unravel the molecular intricacies of the infection and subsequent changes in host cellular processes. Several computational methods have been proposed to identify phosphorylation sites, typically focusing on specific residue (S/T) or Y phosphorylation sites. Unfortunately, current predictive tools perform best on these specific residues and may not extend their efficacy to other residues, emphasizing the urgent need for enhanced methodologies. In this study, we developed a novel predictor that integrated all the residues (STY) phosphorylation sites information. We extracted ten different feature descriptors, primarily derived from composition, evolutionary, and position-specific information, and assessed their discriminative power through five classifiers. Our results indicated that Light Gradient Boosting (LGB) showed superior performance, and five descriptors displayed excellent discriminative capabilities. Subsequently, we identified the top two integrated features have high discriminative capability and trained with LGB to develop the final prediction model, LGB-IPs. The proposed approach shows an excellent performance on 10-fold cross-validation with an ACC, MCC, and AUC values of 0.831, 0.662, 0.907, respectively. Notably, these performances are replicated in the independent evaluation. Consequently, our approach may provide valuable insights into the phosphorylation mechanisms in SARS-CoV-2 infection for biomedical researchers.
Assuntos
COVID-19 , Biologia Computacional , SARS-CoV-2 , Fosforilação , SARS-CoV-2/metabolismo , Humanos , COVID-19/virologia , COVID-19/metabolismo , Biologia Computacional/métodosRESUMO
Asparagine peptide lyase (APL) is among the seven groups of proteases, also known as proteolytic enzymes, which are classified according to their catalytic residue. APLs are synthesized as precursors or propeptides that undergo self-cleavage through autoproteolytic reaction. At present, APLs are grouped into 10 families belonging to six different clans of proteases. Recognizing their critical roles in many biological processes including virus maturation, and virulence, accurate identification and characterization of APLs is indispensable. Experimental identification and characterization of APLs is laborious and time-consuming. Here, we developed APLpred, a novel support vector machine (SVM) based predictor that can predict APLs from the primary sequences. APLpred was developed using Boruta-based optimal features derived from seven encodings and subsequently trained using five machine learning algorithms. After evaluating each model on an independent dataset, we selected APLpred (an SVM-based model) due to its consistent performance during cross-validation and independent evaluation. We anticipate APLpred will be an effective tool for identifying APLs. This could aid in designing inhibitors against these enzymes and exploring their functions. The APLpred web server is freely available at https://procarb.org/APLpred/.
Assuntos
Máquina de Vetores de Suporte , Aprendizado de Máquina , Biologia Computacional/métodos , Software , Sequência de Aminoácidos/genética , Bases de Dados de ProteínasRESUMO
Protein post-translational modification (PTM) is an important regulatory mechanism that plays a key role in both normal and disease states. Acetylation on lysine residues is one of the most potent PTMs owing to its critical role in cellular metabolism and regulatory processes. Identifying protein lysine acetylation (Kace) sites is a challenging task in bioinformatics. To date, several machine learning-based methods for the in silico identification of Kace sites have been developed. Of those, a few are prokaryotic species-specific. Despite their attractive advantages and performances, these methods have certain limitations. Therefore, this study proposes a novel predictor STALLION (STacking-based Predictor for ProkAryotic Lysine AcetyLatION), containing six prokaryotic species-specific models to identify Kace sites accurately. To extract crucial patterns around Kace sites, we employed 11 different encodings representing three different characteristics. Subsequently, a systematic and rigorous feature selection approach was employed to identify the optimal feature set independently for five tree-based ensemble algorithms and built their respective baseline model for each species. Finally, the predicted values from baseline models were utilized and trained with an appropriate classifier using the stacking strategy to develop STALLION. Comparative benchmarking experiments showed that STALLION significantly outperformed existing predictor on independent tests. To expedite direct accessibility to the STALLION models, a user-friendly online predictor was implemented, which is available at: http://thegleelab.org/STALLION.
Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Biologia Computacional/métodos , Cavalos , Lisina/metabolismo , Aprendizado de Máquina , Masculino , Células Procarióticas/metabolismoRESUMO
The COVID-19 pandemic caused several million deaths worldwide. Development of anti-coronavirus drugs is thus urgent. Unlike conventional non-peptide drugs, antiviral peptide drugs are highly specific, easy to synthesize and modify, and not highly susceptible to drug resistance. To reduce the time and expense involved in screening thousands of peptides and assaying their antiviral activity, computational predictors for identifying anti-coronavirus peptides (ACVPs) are needed. However, few experimentally verified ACVP samples are available, even though a relatively large number of antiviral peptides (AVPs) have been discovered. In this study, we attempted to predict ACVPs using an AVP dataset and a small collection of ACVPs. Using conventional features, a binary profile and a word-embedding word2vec (W2V), we systematically explored five different machine learning methods: Transformer, Convolutional Neural Network, bidirectional Long Short-Term Memory, Random Forest (RF) and Support Vector Machine. Via exhaustive searches, we found that the RF classifier with W2V consistently achieved better performance on different datasets. The two main controlling factors were: (i) the dataset-specific W2V dictionary was generated from the training and independent test datasets instead of the widely used general UniProt proteome and (ii) a systematic search was conducted and determined the optimal k-mer value in W2V, which provides greater discrimination between positive and negative samples. Therefore, our proposed method, named iACVP, consistently provides better prediction performance compared with existing state-of-the-art methods. To assist experimentalists in identifying putative ACVPs, we implemented our model as a web server accessible via the following link: http://kurata35.bio.kyutech.ac.jp/iACVP.
Assuntos
Tratamento Farmacológico da COVID-19 , Pandemias , Antivirais/farmacologia , Humanos , Aprendizado de Máquina , PeptídeosRESUMO
Coronavirus disease 2019 (COVID-19) has impacted public health as well as societal and economic well-being. In the last two decades, various prediction algorithms and tools have been developed for predicting antiviral peptides (AVPs). The current COVID-19 pandemic has underscored the need to develop more efficient and accurate machine learning (ML)-based prediction algorithms for the rapid identification of therapeutic peptides against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Several peptide-based ML approaches, including anti-coronavirus peptides (ACVPs), IL-6 inducing epitopes and other epitopes targeting SARS-CoV-2, have been implemented in COVID-19 therapeutics. Owing to the growing interest in the COVID-19 field, it is crucial to systematically compare the existing ML algorithms based on their performances. Accordingly, we comprehensively evaluated the state-of-the-art IL-6 and AVP predictors against coronaviruses in terms of core algorithms, feature encoding schemes, performance evaluation metrics and software usability. A comprehensive performance assessment was then conducted to evaluate the robustness and scalability of the existing predictors using well-constructed independent validation datasets. Additionally, we discussed the advantages and disadvantages of the existing methods, providing useful insights into the development of novel computational tools for characterizing and identifying epitopes or ACVPs. The insights gained from this review are anticipated to provide critical guidance to the scientific community in the rapid design and development of accurate and efficient next-generation in silico tools against SARS-CoV-2.
Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , COVID-19 , Aprendizado de Máquina , Pandemias/prevenção & controle , Peptídeos/química , SARS-CoV-2/metabolismo , Software , Antivirais/uso terapêutico , COVID-19/epidemiologia , Humanos , Peptídeos/uso terapêuticoRESUMO
Long noncoding RNAs (lncRNAs) are primarily regulated by their cellular localization, which is responsible for their molecular functions, including cell cycle regulation and genome rearrangements. Accurately identifying the subcellular location of lncRNAs from sequence information is crucial for a better understanding of their biological functions and mechanisms. In contrast to traditional experimental methods, bioinformatics or computational methods can be applied for the annotation of lncRNA subcellular locations in humans more effectively. In the past, several machine learning-based methods have been developed to identify lncRNA subcellular localization, but relevant work for identifying cell-specific localization of human lncRNA remains limited. In this study, we present the first application of the tree-based stacking approach, TACOS, which allows users to identify the subcellular localization of human lncRNA in 10 different cell types. Specifically, we conducted comprehensive evaluations of six tree-based classifiers with 10 different feature descriptors, using a newly constructed balanced training dataset for each cell type. Subsequently, the strengths of the AdaBoost baseline models were integrated via a stacking approach, with an appropriate tree-based classifier for the final prediction. TACOS displayed consistent performance in both the cross-validation and independent assessments compared with the other two approaches employed in this study. The user-friendly online TACOS web server can be accessed at https://balalab-skku.org/TACOS.
Assuntos
RNA Longo não Codificante , Biologia Computacional/métodos , Humanos , Aprendizado de Máquina , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
Recently, machine learning methods have been developed to identify various peptide bio-activities. However, due to the lack of experimentally validated peptides, machine learning methods cannot provide a sufficiently trained model, easily resulting in poor generalizability. Furthermore, there is no generic computational framework to predict the bioactivities of different peptides. Thus, a natural question is whether we can use limited samples to build an effective predictive model for different kinds of peptides. To address this question, we propose Mutual Information Maximization Meta-Learning (MIMML), a novel meta-learning-based predictive model for bioactive peptide discovery. Using few samples from various functional peptides, MIMML can sufficiently learn the discriminative information amongst various functions and characterize functional differences. Experimental results show excellent performance of MIMML though using far fewer training samples as compared to the state-of-the-art methods. We also decipher the latent relationships among different kinds of functions to understand what meta-model learned to improve a specific task. In summary, this study is a pioneering work in the field of functional peptide mining and provides the first-of-its-kind solution for few-sample learning problems in biological sequence analysis, accelerating the new functional peptide discovery. The source codes and datasets are available on https://github.com/TearsWaiting/MIMML.
Assuntos
Aprendizado de Máquina , Peptídeos , Peptídeos/química , SoftwareRESUMO
Detection and analysis of viral genomes with Nanopore sequencing has shown great promise in the surveillance of pathogen outbreaks. However, the number of virus detection pipelines supporting Nanopore sequencing is very limited. Here, we present VirPipe, a new pipeline for the detection of viral genomes from Nanopore or Illumina sequencing input featuring streamlined installation and customization. AVAILABILITY AND IMPLEMENTATION: VirPipe source code and documentation are freely available for download at https://github.com/KijinKims/VirPipe, implemented in Python and Nextflow.
Assuntos
Sequenciamento por Nanoporos , Nanoporos , Software , Genoma Viral , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Enhancers are non-coding DNA elements that play a crucial role in enhancing the transcription rate of a specific gene in the genome. Experiments for identifying enhancers can be restricted by their conditions and involve complicated, time-consuming, laborious, and costly steps. To overcome these challenges, computational platforms have been developed to complement experimental methods that enable high-throughput identification of enhancers. Over the last few years, the development of various enhancer computational tools has resulted in significant progress in predicting putative enhancers. Thus, researchers are now able to use a variety of strategies to enhance and advance enhancer study. In this review, an overview of machine learning (ML)-based prediction methods for enhancer identification and related databases has been provided. The existing enhancer-prediction methods have also been reviewed regarding their algorithms, feature selection processes, validation techniques, and software utility. In addition, the advantages and drawbacks of these ML approaches and guidelines for developing bioinformatic tools have been highlighted for a more efficient enhancer prediction. This review will serve as a useful resource for experimentalists in selecting the appropriate ML tool for their study, and for bioinformaticians in developing more accurate and advanced ML-based predictors.
Assuntos
Elementos Facilitadores Genéticos , Genoma Humano , Humanos , Biologia Computacional/métodos , Algoritmos , Aprendizado de MáquinaRESUMO
Enhancers are deoxyribonucleic acid (DNA) fragments which when bound by transcription factors enhance the transcription of related genes. Due to its sporadic distribution and similar fractions, identification of enhancers from the human genome seems a daunting task. Compared to the traditional experimental approaches, computational methods with easy-to-use platforms could be efficiently applied to annotate enhancers' functions and physiological roles. In this aspect, several bioinformatics tools have been developed to identify enhancers. Despite their spectacular performances, existing methods have certain drawbacks and limitations, including fixed length of sequences being utilized for model development and cell-specificity negligence. A novel predictor would be beneficial in the context of genome-wide enhancer prediction by addressing the above-mentioned issues. In this study, we constructed new datasets for eight different cell types. Utilizing these data, we proposed an integrative machine learning (ML)-based framework called Enhancer-IF for identifying cell-specific enhancers. Enhancer-IF comprehensively explores a wide range of heterogeneous features with five commonly used ML methods (random forest, extremely randomized tree, multilayer perceptron, support vector machine and extreme gradient boosting). Specifically, these five classifiers were trained with seven encodings and obtained 35 baseline models. The output of these baseline models was integrated and again inputted to five classifiers for the construction of five meta-models. Finally, the integration of five meta-models through ensemble learning improved the model robustness. Our proposed approach showed an excellent prediction performance compared to the baseline models on both training and independent datasets in different cell types, thus highlighting the superiority of our approach in the identification of the enhancers. We assume that Enhancer-IF will be a valuable tool for screening and identifying potential enhancers from the human DNA sequences.
Assuntos
Biologia Computacional/métodos , Elementos Facilitadores Genéticos , Genoma Humano , Aprendizado de Máquina , Software , Algoritmos , Bases de Dados Genéticas , Humanos , Reprodutibilidade dos Testes , NavegadorRESUMO
The release of interleukin (IL)-6 is stimulated by antigenic peptides from pathogens as well as by immune cells for activating aggressive inflammation. IL-6 inducing peptides are derived from pathogens and can be used as diagnostic biomarkers for predicting various stages of disease severity as well as being used as IL-6 inhibitors for the suppression of aggressive multi-signaling immune responses. Thus, the accurate identification of IL-6 inducing peptides is of great importance for investigating their mechanism of action as well as for developing diagnostic and immunotherapeutic applications. This study proposes a novel stacking ensemble model (termed StackIL6) for accurately identifying IL-6 inducing peptides. More specifically, StackIL6 was constructed from twelve different feature descriptors derived from three major groups of features (composition-based features, composition-transition-distribution-based features and physicochemical properties-based features) and five popular machine learning algorithms (extremely randomized trees, logistic regression, multi-layer perceptron, support vector machine and random forest). To enhance the utility of baseline models, they were effectively and systematically integrated through a stacking strategy to build the final meta-based model. Extensive benchmarking experiments demonstrated that StackIL6 could achieve significantly better performance than the existing method (IL6PRED) and outperformed its constituent baseline models on both training and independent test datasets, which thereby support its excellent discrimination and generalization abilities. To facilitate easy access to the StackIL6 model, it was established as a freely available web server accessible at http://camt.pythonanywhere.com/StackIL6. It is anticipated that StackIL6 can help to facilitate rapid screening of promising IL-6 inducing peptides for the development of diagnostic and immunotherapeutic applications in the future.
Assuntos
Biologia Computacional/métodos , Interleucina-6/biossíntese , Peptídeos/metabolismo , Algoritmos , Sequência de Aminoácidos , Benchmarking , Fenômenos Químicos , Humanos , Aprendizado de Máquina , Peptídeos/química , Curva ROC , Reprodutibilidade dos TestesRESUMO
Origins of replication sites (ORIs), which refers to the initiative locations of genomic DNA replication, play essential roles in DNA replication process. Detection of ORIs' distribution in genome scale is one of key steps to in-depth understanding their regulation mechanisms. In this study, we presented a novel machine learning-based approach called Stack-ORI encompassing 10 cell-specific prediction models for identifying ORIs from four different eukaryotic species (Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana). For each cell-specific model, we employed 12 feature encoding schemes that cover nucleic acid composition, position-specific and physicochemical properties information. The optimal feature set was identified from each encoding individually and developed their respective baseline models using the eXtreme Gradient Boosting (XGBoost) classifier. Subsequently, the predicted scores of 12 baseline models are integrated as a novel feature vector to train XGBoost and develop the final model. Extensive experimental results show that Stack-ORI achieves significantly better performance as compared with their baseline models on both training and independent datasets. Interestingly, Stack-ORI consistently outperforms existing predictor in all cell-specific models, not only on training but also on independent test. Moreover, our novel approach provides necessary interpretations that help understanding model success by leveraging the powerful SHapley Additive exPlanation algorithm, thus underlining the most important feature encoding schemes significant for predicting cell-specific ORIs.
Assuntos
Bases de Dados de Ácidos Nucleicos , Modelos Genéticos , Origem de Replicação , Máquina de Vetores de Suporte , Transcrição Gênica , Animais , Drosophila melanogaster , Humanos , CamundongosRESUMO
Deoxyribonucleic acid replication is one of the most crucial tasks taking place in the cell, and it has to be precisely regulated. This process is initiated in the replication origins (ORIs), and thus it is essential to identify such sites for a deeper understanding of the cellular processes and functions related to the regulation of gene expression. Considering the important tasks performed by ORIs, several experimental and computational approaches have been developed in the prediction of such sites. However, existing computational predictors for ORIs have certain curbs, such as building only single-feature encoding models, limited systematic feature engineering efforts and failure to validate model robustness. Hence, we developed a novel species-specific yeast predictor called yORIpred that accurately identify ORIs in the yeast genomes. To develop yORIpred, we first constructed optimal 40 baseline models by exploring eight different sequence-based encodings and five different machine learning classifiers. Subsequently, the predicted probability of 40 models was considered as the novel feature vector and carried out iterative feature learning approach independently using five different classifiers. Our systematic analysis revealed that the feature representation learned by the support vector machine algorithm (yORIpred) could well discriminate the distribution characteristics between ORIs and non-ORIs when compared with the other four algorithms. Comprehensive benchmarking experiments showed that yORIpred achieved superior and stable performance when compared with the existing predictors on the same training datasets. Furthermore, independent evaluation showcased the best and accurate performance of yORIpred thus underscoring the significance of iterative feature representation. To facilitate the users in obtaining their desired results without undergoing any mathematical, statistical or computational hassles, we developed a web server for the yORIpred predictor, which is available at: http://thegleelab.org/yORIpred.
Assuntos
DNA Fúngico/genética , Bases de Dados de Ácidos Nucleicos , Modelos Genéticos , Origem de Replicação , Leveduras/genética , Especificidade da EspécieRESUMO
Neuropeptides (NPs) are the most versatile neurotransmitters in the immune systems that regulate various central anxious hormones. An efficient and effective bioinformatics tool for rapid and accurate large-scale identification of NPs is critical in immunoinformatics, which is indispensable for basic research and drug development. Although a few NP prediction tools have been developed, it is mandatory to improve their NPs' prediction performances. In this study, we have developed a machine learning-based meta-predictor called NeuroPred-FRL by employing the feature representation learning approach. First, we generated 66 optimal baseline models by employing 11 different encodings, six different classifiers and a two-step feature selection approach. The predicted probability scores of NPs based on the 66 baseline models were combined to be deemed as the input feature vector. Second, in order to enhance the feature representation ability, we applied the two-step feature selection approach to optimize the 66-D probability feature vector and then inputted the optimal one into a random forest classifier for the final meta-model (NeuroPred-FRL) construction. Benchmarking experiments based on both cross-validation and independent tests indicate that the NeuroPred-FRL achieves a superior prediction performance of NPs compared with the other state-of-the-art predictors. We believe that the proposed NeuroPred-FRL can serve as a powerful tool for large-scale identification of NPs, facilitating the characterization of their functional mechanisms and expediting their applications in clinical therapy. Moreover, we interpreted some model mechanisms of NeuroPred-FRL by leveraging the robust SHapley Additive exPlanation algorithm.
Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Neuropeptídeos/química , Software , Algoritmos , Sequência Consenso , Bases de Dados Genéticas , Intervenção Baseada em Internet , Neuropeptídeos/metabolismo , Matrizes de Pontuação de Posição Específica , Reprodutibilidade dos Testes , Fluxo de TrabalhoRESUMO
DNA N6-methyladenine (6mA) represents important epigenetic modifications, which are responsible for various cellular processes. The accurate identification of 6mA sites is one of the challenging tasks in genome analysis, which leads to an understanding of their biological functions. To date, several species-specific machine learning (ML)-based models have been proposed, but majority of them did not test their model to other species. Hence, their practical application to other plant species is quite limited. In this study, we explored 10 different feature encoding schemes, with the goal of capturing key characteristics around 6mA sites. We selected five feature encoding schemes based on physicochemical and position-specific information that possesses high discriminative capability. The resultant feature sets were inputted to six commonly used ML methods (random forest, support vector machine, extremely randomized tree, logistic regression, naïve Bayes and AdaBoost). The Rosaceae genome was employed to train the above classifiers, which generated 30 baseline models. To integrate their individual strength, Meta-i6mA was proposed that combined the baseline models using the meta-predictor approach. In extensive independent test, Meta-i6mA showed high Matthews correlation coefficient values of 0.918, 0.827 and 0.635 on Rosaceae, rice and Arabidopsis thaliana, respectively and outperformed the existing predictors. We anticipate that the Meta-i6mA can be applied across different plant species. Furthermore, we developed an online user-friendly web server, which is available at http://kurata14.bio.kyutech.ac.jp/Meta-i6mA/.
Assuntos
Adenosina/análogos & derivados , Biologia Computacional/métodos , DNA de Plantas/genética , Epigênese Genética/genética , Genoma de Planta/genética , Aprendizado de Máquina , Adenosina/metabolismo , Algoritmos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , DNA de Plantas/metabolismo , Internet , Modelos Genéticos , Oryza/genética , Oryza/metabolismo , Rosaceae/genética , Rosaceae/metabolismo , Especificidade da Espécie , Máquina de Vetores de SuporteRESUMO
The development of efficient and effective bioinformatics tools and pipelines for identifying peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activities from large-scale protein datasets is of great importance for the discovery and development of potential and promising antidiabetic drugs. In this study, we present a novel stacking-based ensemble learning predictor (termed StackDPPIV) designed for identification of DPP-IV inhibitory peptides. Unlike the existing method, which is based on single-feature-based methods, we combined five popular machine learning algorithms in conjunction with ten different feature encodings from multiple perspectives to generate a pool of various baseline models. Subsequently, the probabilistic features derived from these baseline models were systematically integrated and deemed as new feature representations. Finally, in order to improve the predictive performance, the genetic algorithm based on the self-assessment-report was utilized to determine a set of informative probabilistic features and then used the optimal one for developing the final meta-predictor (StackDPPIV). Experiment results demonstrated that StackDPPIV could outperform its constituent baseline models on both the training and independent datasets. Furthermore, StackDPPIV achieved an accuracy of 0.891, MCC of 0.784 and AUC of 0.961, which were 9.4%, 19.0% and 11.4%, respectively, higher than that of the existing method on the independent test. Feature analysis demonstrated that our feature representations had more discriminative ability as compared to conventional feature descriptors, which highlights the combination of different features was essential for the performance improvement. In order to implement the proposed predictor, we had built a user-friendly online web server at http://pmlabstack.pythonanywhere.com/StackDPPIV.