Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Health Care Manage Rev ; 49(3): 186-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757912

RESUMO

BACKGROUND: Previous research has identified some tensions that public organizations may encounter during crises. However, there remains a scarcity of research examining how public health care organizations effectively navigate these tensions to reconcile the diverse interests, needs, and demands from various stakeholders. PURPOSES: The study seeks to shed light on the dynamics underlying the tensions experienced by public hospitals during the COVID-19 pandemic. It illustrates how different hospitals' actors have navigated these tensions, identifying solutions and approaches that fostered collaborative endeavors among internal and external stakeholders. METHODOLOGY: The study draws on qualitative analyses of 49 semistructured interviews and the notes from two focus groups involving key informants at one of the largest university hospitals in Italy. We also rely on the verbatim transcripts from meetings involving the members of the temporary emergency team constituting the taskforce. FINDINGS: The results highlight the tensions that emerged throughout the different waves of the COVID-19 pandemic and how various actors have managed them in a way to reconcile opposing forces while unleashing adaptability and creativity. PRACTICE IMPLICATIONS: Hospital managers would benefit from developing a paradoxical mindset for crisis preparedness, allowing them to embrace existing tensions and devise creative solutions to favor resilience and change.


Assuntos
COVID-19 , Grupos Focais , Hospitais Universitários , Pandemias , Pesquisa Qualitativa , COVID-19/epidemiologia , Itália/epidemiologia , Humanos , Hospitais Universitários/organização & administração , Entrevistas como Assunto , SARS-CoV-2
2.
Eur J Clin Microbiol Infect Dis ; 42(10): 1173-1181, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597051

RESUMO

PURPOSE: To identify the predictors of morbidity and mortality in matched COVID-19 positive and negative patients who were septic with Gram positive or Gram negative infections. METHODS: We conducted a retrospective review, from March to October 2020, of matched septic patients at five Hackensack Meridian Health hospitals who had bacteremia with Staphylococcus aureus, Klebsiella pneumoniae or Escherichia coli with and without COVID-19. We extracted patient demographics, comorbidities and clinical outcomes data using ICD-10 codes. Bacterial isolates were compared by whole genome sequencing analysis. Multivariate logistic regression was used to analyze independent predictors of morbidity and mortality. RESULTS: A total of 208 patients were grouped by positive bloodstream infection (BSI) with COVID-19 (n = 104) and without COVID-19 (n = 104). Most patients were over age 50 (90% vs. 89%) and Caucasian (78% vs. 86%). Inpatient mortality was higher in patients with COVID-19 for both GP (35% vs. 8%, p < 0.05) and GN (28% vs. 10%, p < 0.05) BSIs. Patients with Gram positive (GP) BSIs had a significant increase in mortality risk (OR 4.5, CI 1.4-14.5, p < 0.05) in contrast to those with Gram negative (GN) infections (OR 0.4, CI 0.4-4.0, p = 0.4). CONCLUSION: Concurrent COVID-19 infection is associated with a significant increase in morbidity and mortality in patients with GP and GN BSIs. Patients with S. aureus BSIs with COVID-19 are more likely to develop shock and respiratory failure and have higher rates and odds of mortality than those without COVID-19. These findings provide an essential insight into the care of these patients, especially those co-infected with Staphylococcus aureus.


Assuntos
Bacteriemia , COVID-19 , Sepse , Infecções Estafilocócicas , Humanos , Pessoa de Meia-Idade , Staphylococcus aureus , COVID-19/complicações , Sepse/complicações , Sepse/epidemiologia , Bacteriemia/complicações , Bacteriemia/epidemiologia , Pacientes Internados , Escherichia coli
3.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614161

RESUMO

Fenofibrate (FBR), an oral medication used to treat dyslipidemia, is a ligand of the peroxisome proliferator-activated receptor α (PPARα), a nuclear receptor that regulates the expression of metabolic genes able to control lipid metabolism and food intake. PPARα natural ligands include fatty acids (FA) and FA derivatives such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), known to have anti-inflammatory and anorexigenic activities, respectively. We investigated changes in the FA profile and FA derivatives by HPLC and LC-MS in male C57BL/6J mice fed a standard diet with or without 0.2% fenofibrate (0.2% FBR) for 21 days. Induction of PPARα by 0.2% FBR reduced weight gain, food intake, feed efficiency, and liver lipids and induced a profound change in FA metabolism mediated by parallel enhanced mitochondrial and peroxisomal ß-oxidation. The former effects led to a steep reduction of essential FA, particularly 18:3n3, with a consequent decrease of the n3-highly unsaturated fatty acids (HUFA) score; the latter effect led to an increase of 16:1n7 and 18:1n9, suggesting enhanced hepatic de novo lipogenesis with increased levels of hepatic PEA and OEA, which may activate a positive feedback and further sustain reductions of body weight, hepatic lipids and feed efficiency.


Assuntos
Ácidos Graxos , Fenofibrato , PPAR alfa , Animais , Masculino , Camundongos , Endocanabinoides/metabolismo , Ácidos Graxos/metabolismo , Fenofibrato/farmacologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , PPAR alfa/agonistas
4.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830242

RESUMO

Vitamin D deficiency is associated with poor mental health and dysmetabolism. Several metabolic abnormalities are associated with psychotic diseases, which can be compounded by atypical antipsychotics that induce weight gain and insulin resistance. These side-effects may be affected by vitamin D levels. The gut microbiota and endocannabinoidome (eCBome) are significant regulators of both metabolism and mental health, but their role in the development of atypical antipsychotic drug metabolic side-effects and their interaction with vitamin D status is unknown. We studied the effects of different combinations of vitamin D levels and atypical antipsychotic drug (olanzapine) exposure on whole-body metabolism and the eCBome-gut microbiota axis in female C57BL/6J mice under a high fat/high sucrose (HFHS) diet in an attempt to identify a link between the latter and the different metabolic outputs induced by the treatments. Olanzapine exerted a protective effect against diet-induced obesity and insulin resistance, largely independent of dietary vitamin D status. These changes were concomitant with olanzapine-mediated decreases in Trpv1 expression and increases in the levels of its agonists, including various N-acylethanolamines and 2-monoacylglycerols, which are consistent with the observed improvement in adiposity and metabolic status. Furthermore, while global gut bacteria community architecture was not altered by olanzapine, we identified changes in the relative abundances of various commensal bacterial families. Taken together, changes of eCBome and gut microbiota families under our experimental conditions might contribute to olanzapine and vitamin D-mediated inhibition of weight gain in mice on a HFHS diet.


Assuntos
Antipsicóticos/farmacologia , Endocanabinoides/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Olanzapina/farmacologia , Vitamina D/farmacologia , Aldo-Ceto Redutases/genética , Aldo-Ceto Redutases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Etanolaminas/metabolismo , Feminino , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Aumento de Peso/efeitos dos fármacos
5.
Molecules ; 27(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35011234

RESUMO

The endocannabinoidome (expanded endocannabinoid system, eCBome)-gut microbiome (mBIome) axis plays a fundamental role in the control of energy intake and processing. The liver-expressed antimicrobial peptide 2 (LEAP2) is a recently identified molecule acting as an antagonist of the ghrelin receptor and hence a potential effector of energy metabolism, also at the level of the gastrointestinal system. Here we investigated the role of the eCBome-gut mBIome axis in the control of the expression of LEAP2 in the liver and, particularly, the intestine. We confirm that the small intestine is a strong contributor to the circulating levels of LEAP2 in mice, and show that: (1) intestinal Leap2 expression is profoundly altered in the liver and small intestine of 13 week-old germ-free (GF) male mice, which also exhibit strong alterations in eCBome signaling; fecal microbiota transfer (FMT) from conventionally raised to GF mice completely restored normal Leap2 expression after 7 days from this procedure; in 13 week-old female GF mice no significant change was observed; (2) Leap2 expression in organoids prepared from the mouse duodenum is elevated by the endocannabinoid noladin ether, whereas in human Caco-2/15 epithelial intestinal cells it is elevated by PPARγ activation by rosiglitazone; (3) Leap2 expression is elevated in the ileum of mice with either high-fat diet-or genetic leptin signaling deficiency-(i.e., ob/ob and db/db mice) induced obesity. Based on these results, we propose that LEAP2 originating from the small intestine may represent a player in eCBome- and/or gut mBIome-mediated effects on food intake and energy metabolism.


Assuntos
Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Endocanabinoides/genética , Microbioma Gastrointestinal/genética , Receptores de Grelina/antagonistas & inibidores , Animais , Células CACO-2 , Dieta Hiperlipídica , Feminino , Glicerídeos/metabolismo , Humanos , Intestinos , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Obesidade , RNA Mensageiro/genética , Rosiglitazona/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem
6.
J Lipid Res ; 61(1): 70-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31690638

RESUMO

The gut microbiota is a unique ecosystem of microorganisms interacting with the host through several biochemical mechanisms. The endocannabinoidome (eCBome), a complex signaling system including the endocannabinoid system, approximately 50 receptors and metabolic enzymes, and more than 20 lipid mediators with important physiopathologic functions, modulates gastrointestinal tract function and may mediate host cell-microbe communications there. Germ-free (GF) mice, which lack an intestinal microbiome and so differ drastically from conventionally raised (CR) mice, offer a unique opportunity to explore the eCBome in a microbe-free model and in the presence of a reintroduced functional gut microbiome through fecal microbiota transplant (FMT). We aimed to gain direct evidence for a link between the microbiome and eCBome systems by investigating eCBome alterations in the gut in GF mice before and after FMT. Basal eCBome gene expression and lipid profiles were measured in various segments of the intestine of GF and CR mice at juvenile and adult ages using targeted quantitative PCR transcriptomics and LC-MS/MS lipidomics. GF mice exhibited age-dependent modifications in intestinal eCBome gene expression and lipid mediator levels. FMT from CR donor mice to age-matched GF male mice reversed several of these alterations, particularly in the ileum and jejunum, after only 1 week, demonstrating that the gut microbiome directly impacts the host eCBome and providing a cause-effect relationship between the presence or absence of intestinal microbes and eCBome signaling. These results open the way to new studies investigating the mechanisms through which intestinal microorganisms exploit eCBome signaling to exert some of their physiopathologic functions.


Assuntos
Endocanabinoides/metabolismo , Microbioma Gastrointestinal , Intestinos/química , Intestinos/microbiologia , Transdução de Sinais , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Clin Infect Dis ; 68(11): 1823-1830, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30239599

RESUMO

BACKGROUND: Overcoming ß-lactam resistance in pathogens such as Pseudomonas aeruginosa is a major clinical challenge. Rapid molecular diagnostics (RMDs) have the potential to inform selection of empiric therapy in patients infected by P. aeruginosa. METHODS: In this study, we used a heterogeneous collection of 197 P. aeruginosa that included multidrug-resistant isolates to determine whether 2 representative RMDs (Acuitas Resistome test and VERIGENE gram-negative blood culture test) could identify susceptibility to 2 newer ß-lactam/ß-lactamase inhibitor (BL-BLI) combinations, ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (TOL/TAZO). RESULTS: We found that the studied RMD platforms were able to correctly identify BL-BLI susceptibility (susceptibility sensitivity, 100%; 95% confidence interval [CI], 97%, 100%) for both BLs-BLIs. However, their ability to detect resistance to these BLs-BLIs was lower (resistance sensitivity, 66%; 95% CI, 52%, 78% for TOL/TAZO and 33%; 95% CI, 20%, 49% for CZA). CONCLUSIONS: The diagnostic platforms studied showed the most potential in scenarios where a resistance gene was detected or in scenarios where a resistance gene was not detected and the prevalence of resistance to TOL/TAZO or CZA is known to be low. Clinicians need to be mindful of the benefits and risks that result from empiric treatment decisions that are based on resistance gene detection in P. aeruginosa, acknowledging that such decisions are impacted by the prevalence of resistance, which varies temporally and geographically.


Assuntos
Antibacterianos/uso terapêutico , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/uso terapêutico , Cefalosporinas/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Técnicas de Diagnóstico Molecular/normas , Infecções por Pseudomonas/tratamento farmacológico , Tazobactam/uso terapêutico , Antibacterianos/farmacologia , Combinação de Medicamentos , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular/métodos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sensibilidade e Especificidade , Resistência beta-Lactâmica , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico
8.
Int J Mol Sci ; 19(6)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891784

RESUMO

n-3 highly unsaturated fatty acids (n-3 HUFA) directly and indirectly regulate lipid metabolism, energy balance and the inflammatory response. We investigated changes to the n-3 HUFA score of healthy adults, induced by different types and amounts of conjugated linoleic acid (CLA)-enriched (ENCH) cheeses consumed for different periods of time, compared to dietary fish oil (FO) pills (500 mg, each containing 100 mg of eicosapentaenoic and docosahexaenoic acids­EPA+DHA) or α-linolenic acid (ALA)-rich linseed oil (4 g, containing 2 g of ALA). A significant increase in the n-3 HUFA score was observed, in a dose-dependent manner, after administration of the FO supplement. In terms of the impact on the n-3 HUFA score, the intake of ENCH cheese (90 g/day) for two or four weeks was equivalent to the administration of one or two FO pills, respectively. Conversely, the linseed oil intake did not significantly impact the n-3 HUFA score. Feeding ENCH cheeses from different sources (bovine, ovine and caprine) for two months improved the n-3 HUFA score by increasing plasma DHA, and the effect was proportional to the CLA content in the cheese. We suggest that the improved n-3 HUFA score resulting from ENCH cheese intake may be attributed to increased peroxisome proliferator-activated receptor alpha (PPAR-α) activity. This study demonstrates that natural ENCH cheese is an alternative nutritional source of n-3 HUFA in humans.


Assuntos
Queijo/análise , Dieta , Ácidos Graxos Ômega-3/sangue , Ácidos Linoleicos Conjugados/administração & dosagem , Adulto , Feminino , Humanos , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo
9.
Clin Infect Dis ; 64(suppl_1): S13-S17, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28350898

RESUMO

The Antibacterial Resistance Leadership Group (ARLG) Laboratory Center (LC) leads the evaluation, development, and implementation of laboratory-based research by providing scientific leadership and supporting standard/specialized laboratory services. The LC has developed a physical biorepository and a virtual biorepository. The physical biorepository contains bacterial isolates from ARLG-funded studies located in a centralized laboratory and they are available to ARLG investigators. The Web-based virtual biorepository strain catalogue includes well-characterized gram-positive and gram-negative bacterial strains published by ARLG investigators. The LC, in collaboration with the ARLG Leadership and Operations Center, developed procedures for review and approval of strain requests, guidance during the selection process, and for shipping strains from the distributing laboratories to the requesting investigators. ARLG strains and scientific and/or technical guidance have been provided to basic research laboratories and diagnostic companies for research and development, facilitating collaboration between diagnostic companies and the ARLG Master Protocol for Evaluating Multiple Infection Diagnostics (MASTERMIND) initiative for evaluation of multiple diagnostic devices from a single patient sampling event. In addition, the LC has completed several laboratory-based studies designed to help evaluate new rapid molecular diagnostics by developing, testing, and applying a MASTERMIND approach using purified bacterial strains. In collaboration with the ARLG's Statistical and Data Management Center (SDMC), the LC has developed novel analytical strategies that integrate microbiologic and genetic data for improved and accurate identification of antimicrobial resistance. These novel approaches will aid in the design of future ARLG studies and help correlate pathogenic markers with clinical outcomes. The LC's accomplishments are the result of a successful collaboration with the ARLG's Leadership and Operations Center, Diagnostics and Devices Committee, and SDMC. This interactive approach has been pivotal for the success of LC projects.


Assuntos
Antibacterianos , Pesquisa Biomédica , Farmacorresistência Bacteriana , Laboratórios , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bancos de Espécimes Biológicos , Pesquisa Biomédica/métodos , Pesquisa Biomédica/organização & administração , Pesquisa Biomédica/normas , Prioridades em Saúde , Humanos , Invenções , Liderança , Navegador
10.
J Clin Microbiol ; 55(1): 134-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795336

RESUMO

The widespread dissemination of carbapenem-resistant Acinetobacter spp. has created significant therapeutic challenges. At present, rapid molecular diagnostics (RMDs) that can identify this phenotype are not commercially available. Two RMD platforms, PCR combined with electrospray ionization mass spectrometry (PCR/ESI-MS) and molecular beacons (MB), for detecting genes conferring resistance/susceptibility to carbapenems in Acinetobacter spp. were evaluated. An archived collection of 200 clinical Acinetobacter sp. isolates was tested. Predictive values for susceptibility and resistance were estimated as a function of susceptibility prevalence and were based on the absence or presence of beta-lactamase (bla) NDM, VIM, IMP, KPC, and OXA carbapenemase genes (e.g., blaOXA-23, blaOXA-24/40, and blaOXA-58 found in this study) against the reference standard of MIC determinations. According to the interpretation of MICs, 49% (n = 98) of the isolates were carbapenem resistant (as defined by either resistance or intermediate resistance to imipenem). The susceptibility sensitivities (95% confidence interval [CI]) for imipenem were 82% (74%, 89%) and 92% (85%, 97%) for PCR/ESI-MS and MB, respectively. Resistance sensitivities (95% CI) for imipenem were 95% (88%, 98%) and 88% (80%, 94%) for PCR/ESI-MS and MB, respectively. PRIMERS III establishes that RMDs can discriminate between carbapenem resistance and susceptibility in Acinetobacter spp. In the context of a known prevalence of resistance, SPVs and RPVs can inform clinicians regarding the best choice for empiric antimicrobial therapy against this multidrug-resistant pathogen.


Assuntos
Acinetobacter/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana/métodos , Patologia Molecular/métodos , Resistência beta-Lactâmica , beta-Lactamases/genética , Acinetobacter/efeitos dos fármacos , Acinetobacter/enzimologia , Primers do DNA , Humanos , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Fatores de Tempo
11.
Clin Infect Dis ; 63(6): 812-7, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27193750

RESUMO

The medical community needs systematic and pragmatic approaches for evaluating the benefit-risk trade-offs of diagnostics that assist in medical decision making. Benefit-Risk Evaluation of Diagnostics: A Framework (BED-FRAME) is a strategy for pragmatic evaluation of diagnostics designed to supplement traditional approaches. BED-FRAME evaluates diagnostic yield and addresses 2 key issues: (1) that diagnostic yield depends on prevalence, and (2) that different diagnostic errors carry different clinical consequences. As such, evaluating and comparing diagnostics depends on prevalence and the relative importance of potential errors. BED-FRAME provides a tool for communicating the expected clinical impact of diagnostic application and the expected trade-offs of diagnostic alternatives. BED-FRAME is a useful fundamental supplement to the standard analysis of diagnostic studies that will aid in clinical decision making.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Diagnóstico por Computador , Medição de Risco/métodos , Actinobacteria , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Modelos Estatísticos , Prevalência
12.
Clin Infect Dis ; 62(2): 181-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26409063

RESUMO

BACKGROUND: Rapid molecular diagnostic (RMD) platforms may lead to better antibiotic use. Our objective was to develop analytical strategies to enhance the interpretation of RMDs for clinicians. METHODS: We compared the performance characteristics of 4 RMD platforms for detecting resistance against ß-lactams in 72 highly resistant isolates of Escherichia coli and Klebsiella pneumoniae (PRIMERS I). Subsequently, 2 platforms were used in a blinded study in which a heterogeneous collection of 196 isolates of E. coli and K. pneumoniae (PRIMERS II) were examined. We evaluated the genotypic results as predictors of resistance or susceptibility against ß-lactam antibiotics. We designed analytical strategies and graphical representations of platform performance, including discrimination summary plots and susceptibility and resistance predictive values, that are readily interpretable by practitioners to inform decision-making. RESULTS: In PRIMERS I, the 4 RMD platforms detected ß-lactamase (bla) genes and identified susceptibility or resistance in >95% of cases. In PRIMERS II, the 2 platforms identified susceptibility against extended-spectrum cephalosporins and carbapenems in >90% of cases; however, against piperacillin/tazobactam, susceptibility was identified in <80% of cases. Applying the analytical strategies to a population with 15% prevalence of ceftazidime-resistance and 5% imipenem-resistance, RMD platforms predicted susceptibility in >95% of cases, while prediction of resistance was 69%-73% for ceftazidime and 41%-50% for imipenem. CONCLUSIONS: RMD platforms can help inform empiric ß-lactam therapy in cases where bla genes are not detected and the prevalence of resistance is known. Our analysis is a first step in bridging the gap between RMDs and empiric treatment decisions.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Enterobacteriaceae/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Técnicas de Diagnóstico Molecular/métodos , Resistência beta-Lactâmica , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Técnicas de Genotipagem/métodos , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Fatores de Tempo
13.
Antimicrob Agents Chemother ; 60(11): 6957-6961, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600053

RESUMO

We developed and evaluated multiplexed molecular beacon probes in a real-time PCR assay to identify prominent extended-spectrum-ß-lactamase, plasmid-mediated AmpC ß-lactamase (pAmpC) and carbapenemase genes directly from perianal swab specimens within 6 h. We evaluated this assay on 158 perianal swabs collected from hematopoietic stem cell transplant recipients and found that this assay was highly sensitive and specific for detection of CTX-M-, pAmpC-, and KPC-producing Enterobacteriaceae compared to culture on chromogenic agar.


Assuntos
Canal Anal/microbiologia , Enterobacteriaceae/genética , Reação em Cadeia da Polimerase Multiplex/métodos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Enterobacteriaceae/isolamento & purificação , Proteínas de Escherichia coli/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Manejo de Espécimes/métodos
14.
Infect Immun ; 83(2): 544-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404027

RESUMO

Mycobacterium tuberculosis is able to synthesize molybdopterin cofactor (MoCo), which is utilized by numerous enzymes that catalyze redox reactions in carbon, nitrogen, and sulfur metabolism. In bacteria, MoCo is further modified through the activity of a guanylyltransferase, MobA, which converts MoCo to bis-molybdopterin guanine dinucleotide (bis-MGD), a form of the cofactor that is required by the dimethylsulfoxide (DMSO) reductase family of enzymes, which includes the nitrate reductase NarGHI. In this study, the functionality of the mobA homolog in M. tuberculosis was confirmed by demonstrating the loss of assimilatory and respiratory nitrate reductase activity in a mobA deletion mutant. This mutant displayed no survival defects in human monocytes or mouse lungs but failed to persist in the lungs of guinea pigs. These results implicate one or more bis-MGD-dependent enzymes in the persistence of M. tuberculosis in guinea pig lungs and underscore the applicability of this animal model for assessing the role of molybdoenzymes in this pathogen.


Assuntos
Nucleotídeos de Guanina/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Pterinas/metabolismo , Tuberculose/microbiologia , Animais , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Nucleotídeos de Guanina/genética , Cobaias , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/microbiologia , Mycobacterium tuberculosis/genética , Nitrato Redutase/genética , Sulfurtransferases/genética
15.
Hepatology ; 59(1): 228-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23857252

RESUMO

UNLABELLED: Studies on gene and/or microRNA (miRNA) dysregulation in the early stages of hepatocarcinogenesis are hampered by the difficulty of diagnosing early lesions in humans. Experimental models recapitulating human hepatocellular carcinoma (HCC) are then used to perform this analysis. We performed miRNA and gene expression profiling to characterize the molecular events involved in the multistep process of hepatocarcinogenesis in the resistant-hepatocyte rat model. A high percentage of dysregulated miRNAs/genes in HCC were similarly altered in early preneoplastic lesions positive for the stem/progenitor cell marker cytokeratin-19, indicating that several HCC-associated alterations occur from the very beginning of the carcinogenic process. Our analysis also identified miRNA/gene-target networks aberrantly activated at the initial stage of hepatocarcinogenesis. Activation of the nuclear factor erythroid related factor 2 (NRF2) pathway and up-regulation of the miR-200 family were among the most prominent changes. The relevance of these alterations in the development of HCC was confirmed by the observation that NRF2 silencing impaired while miR-200a overexpression promoted HCC cell proliferation in vitro. Moreover, T3-induced in vivo inhibition of the NRF2 pathway accompanied the regression of cytokeratin-19-positive nodules, suggesting that activation of this transcription factor contributes to the onset and progression of preneoplastic lesions towards malignancy. The finding that 78% of genes and 57% of dysregulated miRNAs in rat HCC have been previously associated with human HCC as well underlines the translational value of our results. CONCLUSION: This study indicates that most of the molecular changes found in HCC occur in the very early stages of hepatocarcinogenesis. Among these, the NRF2 pathway plays a relevant role and may represent a new therapeutic target.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lesões Pré-Cancerosas/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/etiologia , Proliferação de Células , Humanos , Neoplasias Hepáticas Experimentais/etiologia , Masculino , Ratos , Ratos Endogâmicos F344
16.
Epilepsia Open ; 9(1): 432-438, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016924

RESUMO

Neuromodulation by means of vagus nerve stimulation (VNS) therapy, reduces seizure frequency and improves quality of life in subjects with drug-resistant epilepsy (DRE), yet its molecular mechanism remains unclear. This study investigates the impact of chronic VNS on lipid bioactive metabolites and fatty acids (FA) in the plasma and red blood cells of seven subjects with DRE. By measuring expression levels of peroxisome proliferator-activated receptor α (PPARα) and sirtuin1 (SIRT1) genes-key regulators in energy and lipid metabolism-and lipid profiles before and after various stages of VNS, this study identifies potential mechanisms by which VNS may reduce seizure frequency. Blood samples collected before VNS device implantation, after acute VNS stimulus, and following gradual intensity increments up to therapeutic levels revealed that VNS increases SIRT1 and PPARα expression and erythrocyte concentrations of PPARα ligands. Additionally, we observe reduced de novo lipogenesis biomarkers in erythrocytes, indicating that VNS may influence systemic lipid and energy metabolism. Our findings suggest that VNS could enhance neuronal function by modulating energy metabolism, thus potentially reducing seizure frequency in subjects with DRE. Future research targeting SIRT1 and PPARα may provide innovative therapeutic strategies for managing DRE. Plain Language Summary: The exact mechanism of VNS is still unknown. This study investigated the effects of VNS Therapy on energetic metabolism, suggesting possible novel biomarkers for DRE subjects and neuromodulation therapies.


Assuntos
Epilepsia Resistente a Medicamentos , Estimulação do Nervo Vago , Humanos , Qualidade de Vida , PPAR alfa , Sirtuína 1 , Epilepsia Resistente a Medicamentos/terapia , Convulsões , Ácidos Graxos
17.
Nutrients ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398849

RESUMO

We propose a novel method for assessing metabolic flexibility (MF) through indirect calorimetry. A total of twenty healthy volunteers (10 females; 10 males) aged 45-65 were categorized into a Low-Intensity activity group (LI, 0-1 session of 1 h per week) and a High-Intensity activity group (HI, 5-6 sessions of 2 h per week). Volunteers underwent a stepwise exercise test on a cycle ergometer, connected to a calorimeter, to examine respiratory gas exchange to evaluate peak fatty acid Oxidation (PFO) and peak carbohydrate oxidation (PCO). Circulating peroxisome proliferator-activated receptor α (PPARα) biomarkers, docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratio and N-oleoylethanolamine (OEA), and the endocannabinoid- 2-arachidonoylglycerol (2-AG), were evaluated. We developed two MF parameters: the MF index (MFI), calculated by the product of PFO normalized per kg of fat-free mass (FFM) and the percentage of VO2max at PFO, and the peak energy substrates' oxidation (PESO), computed by summing the kilocalories from the PFO and PCO, normalized per kg FFM. The MFI and PESO were significantly different between the HI and LI groups, showing strong correlations with the circulating bioactive substances. Higher DHA/EPA ratio (p ≤ 0.05) and OEA (p ≤ 0.01), but lower 2-AG levels (p ≤ 0.01) were found in the HI group. These new parameters successfully established a functional link between MF and the balance of PPARα/endocannabinoid systems.


Assuntos
Endocanabinoides , PPAR alfa , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Calorimetria Indireta , Oxirredução , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico
18.
J Infect Dis ; 205(6): 964-74, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22315279

RESUMO

BACKGROUND: Evidence from genotype-phenotype studies suggests that genetic diversity in pathogens have clinically relevant manifestations that can impact outcome of infection and epidemiologic success. We studied 5 closely related Mycobacterium tuberculosis strains that collectively caused extensive disease (n = 862), particularly among US-born tuberculosis patients. METHODS: Representative isolates were selected using population-based genotyping data from New York City and New Jersey. Growth and cytokine/chemokine response were measured in infected human monocytes. Survival was determined in aerosol-infected guinea pigs. RESULTS: Multiple genotyping methods and phylogenetically informative synonymous single nucleotide polymorphisms showed that all strains were related by descent. In axenic culture, all strains grew similarly. However, infection of monocytes revealed 2 growth phenotypes, slower (doubling ∼55 hours) and faster (∼25 hours). The faster growing strains elicited more tumor necrosis factor α and interleukin 1ß than the slower growing strains, even after heat killing, and caused accelerated death of infected guinea pigs (∼9 weeks vs 24 weeks) associated with increased lung inflammation/pathology. Epidemiologically, the faster growing strains were associated with human immunodeficiency virus and more limited in spread, possibly related to their inherent ability to induce a strong protective innate immune response in immune competent hosts. CONCLUSIONS: Natural variation, with detectable phenotypic changes, among closely related clinical isolates of M. tuberculosis may alter epidemiologic patterns in human populations.


Assuntos
Variação Genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/epidemiologia , Adulto , Animais , Cultura Axênica , Citocinas/metabolismo , Evolução Molecular , Feminino , Genótipo , Cobaias , Humanos , Imunidade Inata , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Mycobacterium tuberculosis/classificação , New Jersey/epidemiologia , Cidade de Nova Iorque/epidemiologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Prevalência , Tuberculose/microbiologia
19.
Nutrients ; 15(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38004155

RESUMO

We investigated the influence of varying dietary polyunsaturated fatty acid (PUFA)/saturated fatty acids (SFA) ratios on insulin resistance (IR), fatty acid metabolism, N-acylethanolamine (NAE) bioactive metabolite levels, and mitochondrial function in lean and obese Zucker rats in a model designed to study obesity and IR from overnutrition. We provided diets with 7% fat (w/w), with either a low PUFA/SFA ratio of 0.48, predominantly comprising palmitic acid (PA), (diet-PA), or the standard AIN-93G diet with a high PUFA/SFA ratio of 3.66 (control, diet-C) over eight weeks. In obese rats on diet-PA versus diet-C, there were reductions in plasma triglycerides, cholesterol, glucose, insulin concentrations and improved muscle mitochondrial function, inflammatory markers and increased muscle N-oleoylethanolamine (OEA), a bioactive lipid that modulates lipid metabolism and metabolic flexibility. Elevated palmitic acid levels were found exclusively in obese rats, regardless of their diet, implying an endogenous production through de novo lipogenesis rather than from a dietary origin. In conclusion, a reduced dietary PUFA/SFA ratio positively influenced glucose and lipid metabolism without affecting long-term PA tissue concentrations. This likely occurs due to an increase in OEA biosynthesis, improving metabolic flexibility in obese rats. Our results hint at a pivotal role for balanced dietary PA in countering the effects of overnutrition-induced obesity.


Assuntos
Ácidos Graxos , Resistência à Insulina , Ratos , Animais , Ácidos Graxos/metabolismo , Ratos Zucker , Gorduras na Dieta/farmacologia , Ácidos Graxos Insaturados/metabolismo , Obesidade/metabolismo , Dieta , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Glucose , Ácidos Palmíticos
20.
Cells ; 12(3)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766753

RESUMO

Obesity is associated with a cluster of metabolic disorders, chronic low-grade inflammation, altered gut microbiota, increased intestinal permeability, and alterations of the lipid mediators of the expanded endocannabinoid (eCB) signaling system, or endocannabinoidome (eCBome). In the present study, we characterized the profile of the eCBome and related oxylipins in the small and large intestines of genetically obese (ob/ob) and diabetic (db/db) mice to decipher possible correlations between these mediators and intestinal inflammation and gut microbiota composition. Basal lipid and gene expression profiles, measured by LC/MS-MS-based targeted lipidomics and qPCR transcriptomics, respectively, highlighted a differentially altered intestinal eCBome and oxylipin tone, possibly linked to increased mRNA levels of inflammatory markers in db/db mice. In particular, the duodenal levels of several 2-monoacylglycerols and N-acylethanolamines were increased and decreased, respectively, in db/db mice, which displayed more pronounced intestinal inflammation. To a little extent, these differences were explained by changes in the expression of the corresponding metabolic enzymes. Correlation analyses suggested possible interactions between eCBome/oxylipin mediators, cytokines, and bacterial components and bacterial taxa closely related to intestinal inflammation. Collectively, this study reveals that db/db mice present a higher inflammatory state in the intestine as compared to ob/ob mice, and that this difference is associated with profound and potentially adaptive or maladaptive, and partly intestinal segment-specific alterations in eCBome and oxylipin signaling. This study opens the way to future investigations on the biological role of several poorly investigated eCBome mediators and oxylipins in the context of obesity and diabetes-induced gut dysbiosis and inflammation.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Camundongos , Animais , Oxilipinas , Transcriptoma/genética , Lipidômica , Obesidade/metabolismo , Inflamação/complicações , Camundongos Endogâmicos , Intestinos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa