Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemMedChem ; 19(17): e202300728, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38757641

RESUMO

Synthesis of non-platinum transition metal complexes with N,O donor chelating ligand for application against pathogenesis of cancer with higher efficacy and selectivity is currently an important field of research. We assessed the anti-cancer effect of a mixed ligand Ni(II) complex on human breast and lung cancer cell lines in this investigation. Mononuclear mixed ligand octahedral Ni(II) complex [NiIIL(NO3)(MeOH)] complex (1), with tri-dentate phenol-based ligand 2,4-dichloro-6-((4-methylpiperazin-1-yl) methyl) phenol (HL) along with methanol and nitrate as ancillary ligand was prepared. Piperazine moiety of the ligand exists as boat conformation in this complex as revealed from single crystal X-ray study. UV-visible spectrum of complex (1) exhibits three distinct d-d bands due to spin-allowed 3 A2 g→3T1 g (P), 3 A2 g→3T1 g(F) and 3 A2 g→3T2 g(F) transitions as expected in an octahedral d8 system. Our study revealed that Complex (1) induces apoptotic cell death in mouse and human cancer cells such as mcf-7, A549 and MDA-MB-231 through transactivation of p53 and its pro-apoptotic downstream targets in a dose dependent manner. Furthermore, complex (1) was able to slow the migratory rate of MDA-MB-231 cells' in vitro as well as epithelia -mesenchymal transition (EMT), the key step for metastatic transition and malignancy. Over all our results suggest complex (1) as a potential agent in anti-tumor treatment regimen showing both cytotoxic and anti-metastatic activity against malignant neoplasia.


Assuntos
Antineoplásicos , Apoptose , Movimento Celular , Proliferação de Células , Complexos de Coordenação , Ensaios de Seleção de Medicamentos Antitumorais , Níquel , Humanos , Níquel/química , Níquel/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Linhagem Celular Tumoral , Animais
2.
Inorg Chem ; 48(5): 1826-35, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19235946

RESUMO

Manganese(II/III) complexes of a phenol-based tetradentate ligand L(2-) [H(2)L = N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)-ethylenediamine], namely, [Mn(4)(L)(2)(PhCOO)(6)] (1), [Mn(3)(L)(2)(CH(3)CH(2)COO)(2)(OMe)(2)].H(2)O (2), and [Mn(L){(CH(3))(3)CCOO}(CH(3)OH)].CH(3)OH (3), have been synthesized. The basicity and steric congestion provided by the carboxylate moiety used as an ancillary ligand have profound influence on tuning the nuclearity of these compounds. Results of X-ray crystallography, electronic spectroscopy, and variable-temperature (1.8-300 K) magnetic measurements have been used to characterize these compounds. Complex 1 has a very interesting centrosymmetric structure that involves two crystallographically equivalent binuclear [Mn(II)-Mn(III)] units, connected together by a pair of syn-anti bridging benzoates to generate a "dimer of dimers" structural motif. Compound 2 with propionate as the ancillary ligand, on the other hand, has a nearly linear Mn(III)-Mn(II)-Mn(III) core with antiferromagnetically coupled (J = -0.13 cm(-1)) metal centers. Compound 1 has an S(T) = 9 spin ground state with ferromagneticlly coupled metal centers (J(wb)= 2.8(1) and J(bb) = 0.09(2) cm(-1)) that failed to function as a single molecule magnet due to the presence of low-lying excited states with smaller spin values and a weak magnetic anisotropy. The electron paramagnetic resonance spectrum of 1 in the frozen solution (12 K) displays two signals in the g = 2 and g = 4 regions, each split into six lines due to (55)Mn (I = 5/2) superhyperfine couplings. The use of bulky pivalate as a replacement for benzoate provides enough steric bulk to generate a mononuclear species [Mn(L){(CH(3))(3)CCOO}(CH(3)OH)].CH(3)OH (3). The lone manganese(III) center in this compound has an octahedral geometry, completed by the tetradentate ligand L(2-) together with an axially coordinated methanol molecule and a monodentate pivalate. The latter two are connected by a hydrogen bond, thus stabilizing the monodentate carboxylate moiety. Redox behaviors (CV) of 1 and 3 are grossly similar, each undergoing a quasi-reversible reduction process at E(1/2) = -0.03 and -0.11 V, respectively, versus a Ag/AgCl reference.

3.
Inorg Chem ; 47(9): 3709-18, 2008 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-18402436

RESUMO

Dinuclear oxovanadium(V) compounds [LV(V)O(mu-OH)OV (V)L](PF6) [H2L = N,N'-tert-ethylene bis(salicylideneimine) (H 2Salen) and its derivatives] ( 1- 3) have been obtained by aerial oxidation of V (IV)OL precursors in THF in the presence of added NH 4PF 6. The oxidized vanadium(V) probably extracts an OH (-) ligand from the residual moisture in the solvent and is retained as an unsupported hydroxo-bridge between the metal centers of these compounds as confirmed by single-crystal X-ray diffraction analyses. The molecules of 1- 3 have centrosymmetric structures with each vanadium center having a distorted octahedral geometry. The bridging OH (-) group is located trans to the terminal VO t bond. The latter exerts strong trans labilizing influence to set the participating vanadium centers apart by about 4.1 A. These separations are by far the largest (e.g., V...V#, 4.131 A in 1) among all binuclear compounds containing an unsupported hydroxo bridge reported to date. The complexes retain their identity also in solution as established by (1)H NMR spectroscopy. Electrochemically, the behaviors of 1-3 are quite interesting as studied by cyclic voltammetry in acetonitrile, each undergoing three (except 3) nearly reversible metal-based reductions, all in the positive potential range (e.g., at E (1/2) = 0.57, 0.39, and 0.04 V versus Ag/AgCl reference for 1) as indicated by steady state voltammetry. The electrode process at 0.39 V appears to involve a single-step two-electron transfer as revealed from the normal and differential pulse voltammetric data and probably includes a combination of V(V)-V(IV) <--> V(III)-V(IV) mixed oxidation states. Compounds 1-3 thus provide a unique example of divanadium compounds in which the metal centers are linked by an unsupported hydroxo-bridge.

4.
Inorg Chem ; 47(2): 584-91, 2008 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-18161964

RESUMO

The tetra- and binuclear heterometallic complexes of nickel(II)-vanadium(IV/V) combinations involving a phenol-based primary ligand, viz., N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine (H2L1), are reported in this work. Carboxylates and beta-diketonates have been used as ancillary ligands to obtain the tetranuclear complexes [Ni(II)(2)V(V)(2)(RCOO)(2)(L(1))(2)O(4)] (R = Ph, 1; R = Me(3)C, 2) and the binuclear types [(beta-diket)Ni(II)L(1)V(IV)O(beta-diket)] (3 and 4), respectively. X-ray crystallography shows that the tetranuclear complexes are constructed about an unprecedented heterometallic eight-membered Ni(2)V(2)O(4) core in which the (L(1))(2)- ligands are bound to the Ni center in a N(2)O(2) mode and simultaneously bridge a V atom via the phenoxide O atoms. The cis-N(2)O(4) coordination geometry for Ni is completed by an O atom derived from the bridging carboxylate ligand and an oxo O atom. The latter two atoms, along with a terminal oxide group, complete the O5 square-pyramidal coordination geometry for V. Each of the dinuclear compounds, [(acac)Ni(II)L(1)V(IV)O(acac)] (3) and [(dbm)Ni(II)L(1)V(IV)O(dbm)] (4) [Hdbm = dibenzoylmethane], also features a tetradentate (L(1))(2)- ligand, Ni in an octahedral cis-N(2)O(4) coordination geometry, and V in an O(5) square-pyramidal geometry. In 3 and 4, the bridges between the Ni and V atoms are provided by the (L(1))(2)- ligand. The Ni...V separations in the structures lie in the narrow range of 2.9222(4) A (3) to 2.9637(5) A (4). The paramagnetic Ni centers (S = 1) in 1 and 2 are widely separated (Ni...Ni separations are 5.423 and 5.403 A) by the double V(V)O(4) bridge that leads to weak antiferromagnetic interactions (J = -3.6 and -3.9 cm-1) and thus an ST = 0 ground state for these systems. In 3 and 4, the interactions between paramagnetic centers (Ni(II) and V(IV)) are also antiferromagnetic (J = -8.9 and -10.0 cm-1), leading to an S(T) = 1/2 ground state. Compound 4 undergoes two one-electron redox processes at E(1/2) = +0.66 and -1.34 V vs Ag/AgCl reference due to a V(IV/V) oxidation and a Ni(II)/I reduction, respectively, as indicated by cyclic and differential pulse voltammetry.

5.
Inorg Chem ; 42(25): 8439-45, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14658897

RESUMO

Three new flexidentate 5-substituted salicylaldimino Schiff base ligands (L1-OH-L3-OH) based on 1-(2-aminoethyl)piperazine (X=H, L1-OH; X=NO2, L2-OH; and X=Br, L3-OH) and their nickel(II) complexes (1a, 1b, 2, and 3) have been reported. The piperazinyl arm of these ligands can in principle have both boat and chair conformations that allow the ligands to bind the Ni(II) center in an ambidentate manner, forming square-planar and/or octahedral complexes. The nature of substitution in the salicylaldehyde aromatic ring and the type of associated anion in the complexes have profound influences on the coordination geometry of the isolated products. With the parent ligand L1-OH, the product obtained is either a planar red compound [Ni(L1-O)]+, isolated as tetraphenylborate salt (1a), or an octahedral green compound [Ni(L1-NH)(H2O)3](2+), isolated with sulfate anion (1b); both have been crystallographically characterized. In aqueous solution, both these planar (S=0) and octahedral (S=1) forms are in equilibrium that has been followed in the temperature range 298-338 K by 1H NMR technique using the protocol of Evans's method. The large exothermicity of the equilibrium process [Ni(L1-O)]+ + 3H2O + H+<=>[Ni(L1-NH)(H2O)3](2+) (DeltaH degrees=-46 +/- 0.2 kJ mol(-1) and DeltaS degrees=-133 +/- 5 J K(-1) mol(-1)) reflects formation of three new Ni-OH2 bonds in going from planar to the octahedral species. With the 5-nitro derivative ligand L2-OH, the sole product is an octahedral compound 2, isolated as a sulfate salt while with the bromo derivative ligand L3-OH, the exclusive product is a planar molecule 3 with associated tetraphenylborate anion. Both 2 and 3 have been structurally characterized by X-ray diffraction analysis.

6.
Inorg Chem ; 42(20): 6284-93, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14514303

RESUMO

Syntheses of alkali metal adducts [LVO(2)M(H(2)O)(n)] (1-7) (M = Na(+), K(+), Rb(+), and Cs(+); L = L(1)(-)L(3)) of anionic cis-dioxovanadium(V) species (LVO(2)(-)) of tridentate dithiocarbazate-based Schiff base ligands H(2)L (S-methyl-3-((5-(R-2-hydroxyphenyl))methyl)dithiocarbazate, R = H, L = L(1); R = NO(2), L = L(2); R = Br, L = L(3)) have been reported. The LVO(2)(-) moieties here behave like an analogue of carboxylate group and have displayed interesting variations in their binding pattern with the change in size of the alkali metal ions as revealed in the solid state from the X-ray crystallographic analysis of 1, 3, 6, and 7. The compounds have extended chain structures, forming ion channels, and are stabilized by strong Coulombic and hydrogen-bonded interactions. The number of coordinated water molecules in [LVO(2)M(H(2)O)(n)] decreases as the charge density on the alkali metal ion decreases (n = 3.5 for Na(+) and 1 for K(+) and Rb(+), while, for Cs(+), no coordinated water molecule is present). In solution, compounds 1-7 are stable in water and methanol, while in aprotic solvents of higher donor strengths, viz. CH(3)CN, DMF and DMSO, they undergo photoinduced reduction when exposed to visible light, yielding green solutions from their initial yellow color. The putative product is a mixed-oxidation (mu-oxo)divanadium(IV/V) species as revealed from EPR, electronic spectroscopy, dynamic (1)H NMR, and redox studies.

7.
Inorg Chem ; 43(26): 8501-9, 2004 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-15606199

RESUMO

Copper(II) complexes (1-3) of a sterically constrained phenol-based tetradentate N(2)O(2) ligand 1,4-bis(2-hydroxy-3,5-dimethylbenzyl)piperazine (H(2)L) have been reported. The associated anions of the copper(II) ion precursors have profound influence on the stoichiometry of the products. Thus, with perchlorate ion, the product is a binuclear compound [Cu(2)L(2)] (1), while with coordinating anions viz. Cl(-) and N(3)(-), the products [Cu(3)L(2)Cl(2)(H(2)O)].1/2H(2)L (2) and [Cu(3)L(2)(N(3))(2)(CH(3)OH)].4H(2)O (3) have triangulo trinuclear composition. The syntheses, X-ray structures, and spectroscopic and magnetic properties of these complexes are described. Compound 1 has a noncentrosymmetric structure with a rectangular Cu(2)(OPh)(2) core. It appears to be a rare example of a phenolato-bridged Cu(II) dimer exhibiting ferromagnetic interactions (J = 0.93 cm(-)(1)), a behavior in agreement with the theoretical predictions but seldom observed experimentally. In compounds 2 and 3, the copper centers are triangularly disposed, and the molecules have a shape much like that of a butterfly. The terminal copper centers Cu(1) and Cu(2) in 2 and 3 have distorted square pyramidal geometry, connected to each other by a bridging chloro- (in 2) or azido ligand (in 3) in "end to end" fashion. The central copper center (Cu(3) in 2 and Cu in 3) in both the compounds has distorted square planar geometry. The separations between the metal centers, viz. Cu(1)...Cu(2), Cu(2)...Cu(3), and Cu(3)...Cu(1), are 4.826, 3.214, and 3.244 A, respectively, in 2. The corresponding distances in 3 are 5.590, 3.178, and 3.485 A, respectively. The overall magnetic behaviors in 2 and 3 are consistent with antiferromagnetic interactions between the spin centers. In 3, the exchange couplings between the terminal and central copper centers J(Cu(1))(-)(Cu) and J(Cu(2))(-)(Cu) appear to be equal (-234 cm(-)(1)), resulting in an S = (1)/(2) ground state at temperatures near or below 77 K.

8.
Inorg Chem ; 43(11): 3413-20, 2004 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-15154803

RESUMO

Three coordination polymers of copper(II), viz. ([Cu(ida)(4,4'-bipyH)]ClO(4))( proportional, variant ) (1), ([Cu(2)(ida)(2)(micro-4,4'-bipy)].2H(2)O)( proportional, variant ) (2), and [Cu(2)(ida)(2)(bpa)]( proportional, variant ) (3) have been synthesized by the process of self-assembly using Cu(ida) [ida = iminodiacetate(2-)] as the building block and 4,4'-bipyridyl and 1,2-bis(4-pyridyl)ethane (bpa) as linkers. Crystals of 1 are orthorhombic, of space group Pna2(1), with a = 13.8956(12) A, b = 16.3362(16) A, c = 7.3340(12), and Z = 4. Both compounds 2 and 3 crystallize in monoclinic space group P2(1)/a with a = 10.1887(8) A (9.6779(10) A for 3), b = 8.0008(11) A (9.1718(10) A), c = 11.6684(9) A (12.9144(12) A), beta = 98.307(11) degrees (102.796(18) degrees ), and Z = 2 (2). Compound 1 has a zigzag chain structure with an extensive hydrogen-bonded network while compounds 2 and 3 are honeycomb (6,3) nets with interpenetrating structures. Variable temperature (2-300 K) magnetic study indicates the presence of weak antiferromagnetic interactions (J = 0.82 +/- 0.01 cm(-)(1)) in 1 and ferromagnetic in 2 (J = -0.45 +/- 0.05 cm(-)(1)) and 3 (J = -0.21 +/- 0.02 cm(-)(1)). The extent of planarity of the bridging "Cu-O-C-O-Cu" moiety, acting as the super-exchange pathway between the neighboring copper centers, probably controls the sign of the magnetic exchange coupling in these compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa