Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 97(16): 2182-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16289791

RESUMO

A field experiment was conducted on a Vertisol for three consecutive years (1998-2000) to study the effects of combined use of inorganic fertilizer (NPK) and organic manure (farmyard manure) on soil physical properties, water-use efficiency, root growth and yield of soybean [Glycine max (L.) Merr.] in a soybean-mustard cropping system. Application of 10 Mg farmyard manure and recommended NPK (NPK+FYM) to soybean for three consecutive years improved the organic carbon content of the surface (0-15 cm) soil from an initial value of 4.4 g kg(-1) to 6.2 g kg(-1) and also increased seed yield and water-use efficiency by 103% and 76%, respectively, over the control. The surface (0-15 cm) soil of the plots receiving both farmyard manure and recommended NPK had larger mean weight diameter (0.50 mm) and a higher percentage of water stable aggregates (55%) than both the inorganically fertilized (NPK) (0.44 mm and 49%) and unfertilized control plots (0.41 mm and 45.4%). The saturated hydraulic conductivity (13.32 x 10(-6) m s(-1)) of the NPK+FYM treatment of the 0-7.5 cm depth was also significantly greater than that of the NPK (10.53 x 10(-6) m s(-1)) and control (8.61 x 10(-6) m s(-1)) treatments. The lowest bulk density (1.18 Mg m(-3)) in the 0-7.5 cm layer was recorded in NPK+FYM whereas it was highest in the control plots (1.30 Mg m(-3)). However, at sub-surface (22.5-30 cm) layer, fertilizer and manure application had little effect on bulk density and saturated hydraulic conductivity. Root length density (RLD) up to the 30 cm depth was highest in the NPK+FYM plots and it was 31.9% and 70.5% more than NPK and control plots. The RLD showed a significant and negative correlation (r=-0.88( * *)) with the penetration resistance.


Assuntos
Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Glycine max/crescimento & desenvolvimento , Esterco , Raízes de Plantas/crescimento & desenvolvimento , Solo/análise , Animais , Biomassa , Índia
2.
Bioresour Technol ; 95(1): 85-93, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15207300

RESUMO

A field experiment was conducted on a deep Vertisol of Bhopal, India to compare root and shoot biomass, chlorophyll content, enzyme activity and nodulation in three cropping systems at three combinations of organic manure and inorganic-fertilizer: 75%NPK + 5 t farmyard manure (FYM), 75%NPK + 1.5 t poultry manure (PM), and 75%NPK + 5 t phosphocompost (PC) vis-a-vis 0%, 75% and 100% of fertilizer-NPK. In general, nodule number and its mass were lower in intercrop soybean than sole soybean. Also there was decrease in the nodule number with higher NPK dose. The FYM treated plots recorded 22.0% and 7.6% higher nodule mass than poultry manure and phosphocompost plots, respectively. Also, the total chlorophyll content was higher in organically treated plots than that in 100% NPK particularly at 30 days after sowing (DAS, pre-flowering). In sorghum the peak nitrate reductase (NR) activity was recorded at 60 DAS while in soybean it was at 30 DAS. The NR activity was higher in intercrop sorghum than that in sole sorghum. Maximum NR activity was observed in 100% NPK. Soybean/sorghum intercropping system recorded significantly higher root and shoot biomass than sole soybean and sorghum. The crop growth rates were relatively rapid during 30-60 DAS and followed the order; intercropping > sole sorghum > sole soybean. With the increase in NPK dose from 0% to 100% there was significant improvement in the dry matter (DM) production in sole sorghum and soybean/sorghum intercropping system. Soybean as preceding crop recorded the highest DM, chlorophyll content, NR activity in wheat while these values were the lowest in sorghum-wheat system.


Assuntos
Agricultura/métodos , Clorofila/análise , Enzimas/análise , Fertilizantes , Esterco , Animais , Bovinos , Produtos Agrícolas , Enzimas/metabolismo , Índia , Nitrato Redutase , Nitrato Redutases/análise , Nitrato Redutases/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Aves Domésticas , Chuva , Solo , Sorghum/química , Glycine max/química , Glycine max/metabolismo , Triticum/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa