Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Chembiochem ; 25(2): e202300698, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37889156

RESUMO

Using high-fidelity, permeable, lipophilic, and bright fluorophores for imaging lipid droplets (LDs) in tissues holds immense potential in diagnosing conditions such as diabetic or alcoholic fatty liver disease. In this work, we utilized linear and Λ-shaped polarity-sensitive fluorescent probes for imaging LDs in both cellular and tissue environments, specifically in rats with diabetic and alcoholic fatty liver disease. The fluorescent probes possess several key characteristics, including high permeability, lipophilicity, and brightness, which make them well-suited for efficient LD imaging. Notably, the probes exhibit a substantial Stokes shift, with 143 nm for DCS and 201 nm for DCN with selective targeting of the lipid droplets. Our experimental investigations successfully differentiated morphological variations between diseased and normal tissues in three distinct tissue types: liver, adipose, and small intestine. They could help provide pointers for improved detection and understanding of LD-related pathologies.


Assuntos
Diabetes Mellitus , Fígado Gorduroso Alcoólico , Ratos , Animais , Gotículas Lipídicas , Corantes Fluorescentes
2.
Lipids Health Dis ; 22(1): 49, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055787

RESUMO

The risk of alcoholic liver disease (ALD) is increased by excessive ethanol drinking. For the prevention of ALD, the effects of ethanol on the liver, adipose tissue, and gut are crucial. Interestingly, garlic and a few probiotic strains can protect against ethanol-induced hepatotoxicity. However, the relationship between adipose tissue inflammation, Kyolic aged garlic extract (AGE), and Lactobacillus rhamnosus MTCC1423 in developing ALD is unknown. Therefore, the present study explored the effect of synbiotics (a combination of prebiotics and probiotics) on adipose tissue to prevent ALD. To investigate the efficacy of synbiotics administration on adipose tissue in preventing ALD, in vitro (3T3-L1 cells, N = 3) groups: control, control + LPS (lipopolysaccharide), ethanol, ethanol + LPS, ethanol + synbiotics, ethanol + synbiotics + LPS; in vivo (Wistar male rats, N = 6) groups: control, ethanol, pairfed, ethanol + synbiotics and in silico experiments were conducted. Lactobacillus multiplies in accordance with the growth curve when exposed to AGE. Additionally, Oil red O staining and scanning electron microscopy (SEM) demonstrated that synbiotics therapy maintained the morphology of adipocytes in the alcoholic model. In support of the morphological changes, quantitative real-time PCR demonstrated overexpression of adiponectin and downregulation of leptin, resistin, PPARγ, CYP2E1, iNOS, IL-6, and TNF-α after administration of synbiotics compared to the ethanol group. In addition, MDA estimation by high-performance liquid chromatography (HPLC) indicated that the synbiotics treatment reduced oxidative stress in rat adipose tissue. Consequently, the in-silico analysis revealed that AGE inhibited the C-D-T networks as PPARγ acting as the main target protein. The current study demonstrates that using synbiotics improves adipose tissue metabolism in ALD.


Assuntos
Hepatopatias Alcoólicas , Probióticos , Simbióticos , Ratos , Masculino , Animais , Etanol/toxicidade , Metabolismo dos Lipídeos , Lipopolissacarídeos , PPAR gama/genética , Ratos Wistar , Hepatopatias Alcoólicas/prevenção & controle , Probióticos/farmacologia , Tecido Adiposo
3.
Mediators Inflamm ; 2022: 4230599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633655

RESUMO

Consumption of alcohol (ethanol) in various forms has been an integral part of human civilization. Since ages, it also has been an important cause of death and health impairment across the globe. Ethanol-mediated liver injury, known as alcoholic liver disease (ALD), is caused by surplus intake of alcohol. Several studies have proposed the different pathways that may be lead to ALD. One of the factors that may affect the cytochrome P450 (CYP2E1) metabolic pathway is gut dysbiosis. The gut microbiota produces various compounds that play an important role in regulating healthy functions of distal organs such as the adipose tissue and liver. Dysbiosis causes bacteremia, hepatic encephalopathy, and increased intestinal permeability. Recent clinical studies have found better understanding of the gut and liver axis. Another factor that may affect the ALD pathway is dysfunction of adipose tissue metabolism. Moreover, dysfunction of adipose tissue leads to ectopic fat deposition within the liver and disturbs lipid metabolism by increasing lipolysis/decreasing lipogenesis and impaired glucose tolerance of adipose tissue which leads to ectopic fat deposition within the liver. Adipokine secretion of resistin, leptin, and adiponectin is adversely modified upon prolonged alcohol consumption. In the combination of these two factors, a proinflammatory state is developed within the patient leading to the progression of ALD. Thus, the therapeutic approach for treatments and prevention for liver cirrhosis patients must be focused on the gut-liver-adipose tissue network modification with the use of probiotics, synbiotics, and prebiotics. This review is aimed at the effect of ethanol on gut and adipose tissue in both rodent and human alcoholic models.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Tecido Adiposo/metabolismo , Disbiose , Etanol/efeitos adversos , Humanos
4.
Mediators Inflamm ; 2021: 6636152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953643

RESUMO

Alcohol-induced liver injury implicates inflammation and oxidative stress as important mediators. Despite rigorous research, there is still no Food and Drug Administration (FDA) approved therapies for any stage of alcoholic liver disease (ALD). Interestingly, metformin (Met) and several probiotic strains possess the potential of inhibiting alcoholic liver injury. Therefore, we investigated the effectiveness of combination therapy using a mixture of eight strains of lactic acid-producing bacteria, commercialized as Visbiome® (V) and Met in preventing the ethanol-induced hepatic injury using in vitro and in vivo models. Human HepG2 cells and male Wistar rats were exposed to ethanol and simultaneously treated with probiotic V or Met alone as well as in combination. Endoplasmic reticulum (ER) stress markers, inflammatory markers, lipid metabolism, reactive oxygen species (ROS) production, and oxidative stress were evaluated, using qRT-PCR, Oil red O staining, fluorimetry, and HPLC. In vitro, probiotic V and Met in combination prevented ethanol-induced cellular injury, ER stress, oxidative stress, and regulated lipid metabolism as well as inflammatory response in HepG2 cells. Probiotic V and Met also promoted macrophage polarization towards the M2 phenotype in ethanol-exposed RAW 264.7 macrophage cells. In vivo, combined administration of probiotic V and Met ameliorated the histopathological changes, inflammatory response, hepatic markers (liver enzymes), and lipid metabolism induced by ethanol. It also improved the antioxidant markers (HO-1 and Nrf-2), as seen by their protein levels in both HepG2 cells as well as liver tissue using ELISA. Hence, probiotic V may act, in addition to the Met, as an effective preventive treatment against ethanol-induced hepatic injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Etanol/toxicidade , Inflamação/tratamento farmacológico , Metformina/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Probióticos/administração & dosagem , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Fator 2 Relacionado a NF-E2/biossíntese , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
5.
Mediators Inflamm ; 2021: 5245197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616233

RESUMO

Ethanol depletes intestinal integrity and promotes gut dysbiosis. Studies have suggested the individual role of probiotics and metformin Met in protecting intestinal barrier function from injuries induced by ethanol. The objective of the current study is to investigate the potential mechanism by which coadministration of probiotic Visbiome® (V) and Met blocks the ethanol-induced intestinal barrier dysfunction/gut leakiness utilizing Caco-2 monolayers, a rat model with chronic ethanol injury, and in silico docking interaction models. In Caco-2 monolayers, exposure to ethanol significantly disrupted tight junction (TJ) localization, elevated monolayer permeability, and oxidative stress compared with controls. However, cotreatment with probiotic V and Met largely ameliorated the ethanol-induced mucosal barrier dysfunction, TJ disruption, and gut oxidative stress compared with ethanol-exposed monolayers and individual treatment of either agent. Rats fed with ethanol-containing Lieber-DeCarli liquid diet showed decreased expression of TJ proteins, and increased intestinal barrier injury resulting in pro-inflammatory response and oxidative stress in the colon. We found that co-administration of probiotic V and Met improved the expression of intestinal TJ proteins (ZO-1 and occludin) and upregulated the anti-inflammatory response, leading to reduced ER stress. Moreover, co-administration of probiotic V and Met inhibited the CYP2E1 and NOX gene expression, and increase the translocation of Nrf-2 as well as anti-oxidative genes (SOD, catalase, Gpx, and HO-1), leading to reduced colonic ROS content and malondialdehyde levels. The combined treatment of probiotic V and Met also improved their binding affinities towards HO-1, Nrf-2, SLC5A8, and GPR109A, which could be attributed to their synergistic effect. Our findings based on in-vitro, in-vivo, and in-silico analyses suggest that the combination of probiotic V and Met potentially acts in synergism, attributable to their property of inhibition of inflammation and oxidative stress against ethanol-induced intestinal barrier injury.


Assuntos
Etanol/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Metformina/farmacologia , Probióticos/farmacologia , Animais , Células CACO-2 , Colo/efeitos dos fármacos , Colo/patologia , Citocromo P-450 CYP2E1/análise , Citocromo P-450 CYP2E1/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Transportadores de Ácidos Monocarboxílicos/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Junções Íntimas/efeitos dos fármacos
6.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067107

RESUMO

Increased blood glucose in diabetic individuals results in the formation of advanced glycation end products (AGEs), causing various adverse effects on kidney cells, thereby leading to diabetic nephropathy (DN). In this study, the antiglycative potential of Swertiamarin (SM) isolated from the methanolic extract of E. littorale was explored. The effect of SM on protein glycation was studied by incubating bovine serum albumin with fructose at 60 °C in the presence and absence of different concentrations of swertiamarin for 24 h. For comparative analysis, metformin was also used at similar concentrations as SM. Further, to understand the role of SM in preventing DN, in vitro studies using NRK-52E cells were done by treating cells with methylglyoxal (MG) in the presence and absence of SM. SM showed better antiglycative potential as compared to metformin. In addition, SM could prevent the MG mediated pathogenesis in DN by reducing levels of argpyrimidine, oxidative stress and epithelial mesenchymal transition in kidney cells. SM also downregulated the expression of interleukin-6, tumor necrosis factor-α and interleukin-1ß. This study, for the first time, reports the antiglycative potential of SM and also provides novel insights into the molecular mechanisms by which SM prevents toxicity of MG on rat kidney cells.


Assuntos
Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Pironas/farmacologia , Animais , Bovinos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/metabolismo , Fluorescência , Frutose , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação/efeitos dos fármacos , Inflamação/patologia , Glucosídeos Iridoides/química , Glucosídeos Iridoides/isolamento & purificação , Ligantes , Malondialdeído/metabolismo , Espectrometria de Massas , Ornitina/análogos & derivados , Ornitina/química , Ornitina/farmacologia , Carbonilação Proteica/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Pironas/química , Pironas/isolamento & purificação , Aldeído Pirúvico , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Soroalbumina Bovina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
7.
BMC Ecol ; 19(1): 37, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510990

RESUMO

BACKGROUND: Maintenance of biodiversity is an integral part of sustainable forest management. Epiphytic bryophytes are an important element of biodiversity. Thus, this work aims to study the role of different physical and biochemical factors in affecting the growth and proliferation of epiphytic liverworts. Fifty trees in three different plots, distributed in Senchal wildlife sanctuary, Darjeeling, were surveyed. Factors such as light intensity, moisture, and diameter at breast height (DBH) of the tree were studied to evaluate their possible role in affecting epiphytic liverworts. The effect of bark biochemical characteristics on the abundance of epiphytic liverworts was also studied by undertaking a quantitative test of pH, phenol, flavonoid, ortho-dihydric phenol, terpene, total sugar, and tannin. Multiple regression analysis and principal component analysis (PCA) were carried out to test the effects of these parameters. RESULTS: Light intensity, moisture, and DBH highly influenced the abundance of liverworts. Old trees had higher epiphytic liverwort cover than younger ones. Bark biochemical properties like pH, phenol, flavonoid, ortho-dihydric phenol, tannin and sugar did not have a significant effect on the epiphytic liverwort cover, while the terpenoid content of the bark reduced liverworts cover. CONCLUSION: To sustain the occurrence of epiphytic liverworts in ecosystems, forest management should ensure the presence of old trees. Light intensity and moisture had a large effect on the distribution and abundance of liverworts, so it is important to maintain tree cover, shrub layer, and tree density.


Assuntos
Cryptomeria , Hepatófitas , Animais , Ecossistema , Casca de Planta , Árvores
8.
BMC Complement Altern Med ; 19(1): 181, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337381

RESUMO

BACKGROUND: Study of phytochemicals and pharmacological properties of bryophytes has been neglected for a long time because of the three main reasons i.e. (i) difficulty in collection in large amount for analysis; (ii) their availablility only in particular season and (iii) their restricted geographic distribution. So, the aim of this work was to propagate Lunularia cruciata under in vitro condition for comparing its pharmacological properties and phytocmecial constituents with naturally grown counterparts. METHOD: Axenic culture of L. cruciata was established by propagating gemmae under in vitro condition. Appropriate culture conditions, media, and the effect of hormones on growth and development were studied. The phytochemical composition was determined by GC-MS analysis and pharmacological activity was evaluated by assessing the antioxidant and anti-diabetic activities. For the antioxidant activity ABTS+ [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)], DPPH• (2,2-diphenyl-1-picrylhydrazyl) and metal chelating assays were done and for evaluation of the in vitro anti-diabetic activity α-glucosidase and α-amylase inhibitory activities were done. RESULT: Growth of L. cruciata was recorded in half strength MS media. Benzylaminopurine (BAP: 2 mg/L) and 1-Naphtheleneacetic acid (NAA: 0.5 mg/L) were the successful hormonal combination. GC-MS analysis revealed the existence of nine key compounds in both in vitro and naturally grown L. cruciata. Result of antioxidant and anti-diabetic activity showed that in vitro grown L. cruciata has a more or less similar antioxidant and anti-diabetic activities as naturally grown ones. This result confirms the possibility of using in vitro grown plants in place of naturally grown plants for research and clinical purposes.


Assuntos
Hepatófitas/química , Hepatófitas/crescimento & desenvolvimento , Compostos Fitoquímicos/química , Extratos Vegetais/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
9.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2053-2066, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29526821

RESUMO

The multifunctional cytokine TGF-ß crucially participates in breast cancer (BCa) metastasis and works differently in the disease stages, thus contributing in BCa progression. We address connections between TGF-ß and the stem cell-related transcription factor (TF) Oct4 in BCa. In 147 BCa patients with infiltrating duct carcinoma, we identified a significantly higher number of cases with both moderate/high Oct4 expression and high TGF-ß in late stages compared to early stages of the disease. In vitro studies showed that TGF-ß elevated Oct4 expression, which in turn, regulated Epithelial-to-Mesenchymal transition (EMT)-regulatory gene (Snail and Slug) expression, migratory ability, chemotactic invasiveness and extracellular matrix (ECM) degradation potential of BCa cells. Putative binding sites for Oct4 on the snail, slug and cxcl13 promoters and for Smad3 on the snail and slug promoters were identified. Promoter activities of snail and slug were greater in dual-treated cells than only TGF-ß-treated or Oct4-overexpressing cells. CXCL13 mRNA fold changes, however, were low in cells induced with TGF-ß, compared to dual-treated or Oct4-overexpressing cells. Our co-IP studies confirmed that Oct4 and Smad3 form heterodimers that recognize specific promoter sequences to promote Snail and Slug expression, but which in turn, indirectly inhibits Smad3-mediated repression of CXCL13 expression, allowing Oct4 to act as a positive TF for CXCL13. Taken together, these data suggest that TGF-ß signaling and Oct4 cooperate to induce expression of EMT-related genes Snail, Slug and CXCL13, which accelerates disease progression, particularly in the late stages, and may indicate a poor prognosis for BCa patients.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Proteína Smad3/metabolismo , Fatores de Transcrição da Família Snail/genética , Adulto , Idoso , Mama/patologia , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Biologia Computacional , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , Multimerização Proteica , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
10.
Drug Chem Toxicol ; 41(3): 302-313, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29319385

RESUMO

Diallyl sulfide (DAS) has been studied extensively for its alleged role as an anticancer and protective agent. Alcohol influences and effects on human health have been extensively studied. However, investigations toward developing and testing therapeutic agents that can reduce the tissue injury caused by ethanol are scarce. In this backdrop, this study was designed to explore the potential effect of DAS in reducing alcohol induced damage of 3T3L1 adipocytes and RAW 264.7 macrophages. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was performed to determine the DAS effect on cell viability. Reactive oxygen species (ROS) production was assessed by flow cytometer. Expression of inflammatory genes was studied by the qRT-PCR method. Our study results showed that DAS at concentrations less than 200 µM was not toxic to the cells and the viability of ethanol-exposed 3T3L1 adipocyte cells was found to be significantly increased when ethanol-exposed cells were treated with DAS. Further, treatment of ethanol-exposed 3T3L1 cells with 100 µM DAS for 24 h was found to reduce ethanol induced ROS production, expression of pro-inflammatory cytokines, and enhance anti-inflammatory cytokine production in the cells. Also, 100 µM DAS was found to increase the expression of M2 phenotype-specific genes in ethanol-exposed RAW 264.7 macrophage cells. Further, 100 µM DAS also improved the levels of lipid accumulation in 3T3L1 adipocytes that was down-regulated by ethanol exposure. Taken together, our study results imply that DAS may be effective in reducing ethanol induced injury of cells thereby suggesting its potential to be used in drug formulations.


Assuntos
Adipócitos/efeitos dos fármacos , Compostos Alílicos/farmacologia , Citocinas/genética , Etanol/toxicidade , Macrófagos/efeitos dos fármacos , Sulfetos/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Polaridade Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , RNA Mensageiro/análise , Espécies Reativas de Oxigênio/metabolismo
11.
Alcohol Clin Exp Res ; 41(6): 1078-1092, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28414868

RESUMO

BACKGROUND: Alcohol consumption is the fourth leading cause of death and disability worldwide. Several cellular pathways contribute to alcohol-mediated tissue injury. Adipose tissue apart from functioning as an endocrine organ secretes several hormones and cytokines known as adipokines that are known to play a significant role in alcohol-induced tissue damage. This study was designed to test the efficacy of diallyl sulfide (DAS) in regulating the alcohol-induced outcomes on adipose tissue. METHODS: Male Wistar rats were fed with 36% Lieber-DeCarli liquid diet containing ethanol (EtOH) for 4 weeks. Control rats were pair-fed with isocaloric diet containing maltodextrin instead of EtOH. During the last week of feeding protocol, the EtOH-fed rat group was given 200 mg/kg body weight of DAS through diet. We also studied DAS effect on isolated human primary adipocytes. Viability of human primary adipocytes on DAS treatment was assessed by MTT assay. Malondialdehyde (MDA), a marker of oxidative stress, was measured by HPLC and the thiobarbituric acid method. Expression of inflammatory genes and lipogenic genes was studied by qRT-PCR and Western blotting. Serum inflammatory gene expression was studied by ELISA. RESULTS: Our study results showed that DAS could alleviate EtOH-induced expression levels of proinflammatory and endoplasmic reticulum (ER) stress genes and improve adipose tissue mass and adipocyte morphology in male Wistar rats fed Lieber-DeCarli diet containing 6% EtOH. Further, we showed that DAS reduced the expression of lipogenic genes and improved lipid accumulation and adipocyte mass in human primary adipocytes treated with EtOH. Subsequently, we also showed that oxidative stress, as measured by the changes in MDA levels, was reduced in both male Wistar rats and human primary adipocytes treated with EtOH plus DAS. CONCLUSIONS: Our study results prove that DAS is effective in ameliorating EtOH-induced damage to adipose tissue as evidenced by the reduction brought about by DAS in oxidative stress, ER stress, and proinflammatory gene expression levels. DAS treatment also regulated lipogenic gene expression levels, thereby reducing free fatty acid release. In conclusion, this study has clinical implications with respect to alcohol-induced adipose tissue injury among alcohol users.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Compostos Alílicos/farmacologia , Antioxidantes/farmacologia , Etanol/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Sulfetos/farmacologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Humanos , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
12.
J Hepatol ; 61(5): 1029-37, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24946281

RESUMO

BACKGROUND & AIMS: Alcoholic liver disease is associated with inflammation and cell death. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with anti-apoptotic and anti-inflammatory properties. Here we tested the hypothesis that induction of HO-1 or treatment with a carbon monoxide releasing molecule (CORM) during chronic ethanol exposure protects and/or reverses ethanol-induced liver injury. METHODS: Female C57BL/6J mice were allowed free access to a complete liquid diet containing ethanol or to pair-fed control diets for 25days. Mice were treated with cobalt protoporphyrin (CoPP) to induce HO-1 expression during ethanol feeding or once liver injury had been established. Mice were also treated with CORM-A1, a CO-releasing molecule (CORM), after ethanol-induced liver injury was established. The impact of HO-1 induction on ethanol-induced cell death was investigated in primary cultures of hepatocytes. RESULTS: Induction of HO-1 during or after ethanol feeding, as well as treatment with CORM-A1, ameliorated ethanol-induced increases in AST and expression of mRNAs for inflammatory cytokines. Treatment with CoPP or CORM-A1 also reduced hepatocyte cell death, indicated by decreased accumulation of CK18 cleavage products and reduced RIP3 expression in hepatocytes. Exposure of primary hepatocyte cultures to ethanol increased their sensitivity to TNFα-induced cell death; this response was attenuated by necrostatin-1, an inhibitor of necroptosis, but not by caspase inhibitors. Induction of HO-1 with CoPP or CORM-3 treatment normalized the sensitivity of hepatocytes to TNFα-induced cell death after ethanol exposure. CONCLUSIONS: Therapeutic strategies to increase HO-1 and/or modulate CO availability ameliorated chronic ethanol-induced liver injury in mice, at least in part by decreasing hepatocellular death.


Assuntos
Monóxido de Carbono/metabolismo , Etanol/toxicidade , Heme Oxigenase-1/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas de Membrana/metabolismo , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Boranos/farmacologia , Carbonatos/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/genética , Citocinas/metabolismo , Indução Enzimática/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Hepatócitos/patologia , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Protoporfirinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
13.
Breast Cancer Res Treat ; 143(2): 265-76, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24337540

RESUMO

We investigated the expression of -CXC chemokine ligand 13 (CXCL13) and its receptor -CXC chemokine receptor 5 (CXCR5) in 98 breast cancer (BC) patients with infiltrating duct carcinoma, out of which 56 were found lymph node metastasis (LNM) positive. Interestingly, co-expression of CXCL13 and CXCR5 showed a significant correlation with LNM. Since, epithelial to mesenchymal transition (EMT) is highly associated with metastasis we investigated EMT-inducing potential of CXCL13 in BC cell lines. In CXCL13-stimulated BC cells, expression of various mesenchymal markers (Vimentin, N-cadherin), EMT regulators (Snail, Slug), and matrix metalloproteinase-9 (MMP9) was increased, whereas the expression of epithelial marker E-cadherin was found to be decreased. In addition, expression of receptor activator of nuclear factor kappa-B ligand (RANKL), which is known to regulate MMP9 expression via Src activation, was also significantly increased after CXCL13 stimulation. Using specific protein kinase inhibitors, we confirmed that CXCL13 stimulated EMT and MMP9 expression via RANKL-Src axis in BC cell lines. To further validate this observation, we examined gene expression patterns in primary breast tumors and detected significantly higher expression of various mesenchymal markers and regulators in CXCL13-CXCR5 co-expressing patients. Therefore, this study showed the EMT-inducing potential of CXCL13 as well as demonstrated the prognostic value of CXCL13-CXCR5 co-expression in primary BC. Moreover, CXCL13-CXCR5-RANKL-Src axis may present a therapeutic target in LNM positive BC patients.


Assuntos
Neoplasias da Mama/patologia , Quimiocina CXCL13/metabolismo , Transição Epitelial-Mesenquimal , Metástase Linfática/patologia , Receptores CXCR5/metabolismo , Adulto , Idoso , Antígenos CD/biossíntese , Biomarcadores Tumorais/metabolismo , Caderinas/biossíntese , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CXCL13/antagonistas & inibidores , Quimiocina CXCL13/biossíntese , Feminino , Furanos/farmacologia , Humanos , Indóis/farmacologia , Metaloproteinase 9 da Matriz/biossíntese , Pessoa de Meia-Idade , Inibidores de Fosfoinositídeo-3 Quinase , Piridinas/farmacologia , Pirimidinas/farmacologia , Ligante RANK/biossíntese , Ligante RANK/genética , RNA Mensageiro/biossíntese , Receptores CXCR5/antagonistas & inibidores , Receptores CXCR5/biossíntese , Transdução de Sinais , Fatores de Transcrição da Família Snail , Sulfonamidas/farmacologia , Fatores de Transcrição/biossíntese , Vimentina/biossíntese , Quinases da Família src/antagonistas & inibidores
14.
J Res Med Sci ; 19(12): 1200-2, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25709664

RESUMO

Primary sarcoma of the breast is very rare and constitutes less than 1% of all breast cancers. Herein, we report a case of pleomorphic rhabdomyosarcoma (PRMS) of the right breast in a 49-year-old female patient presented with a mass (7 cm × 6.5 cm). Mammography and ultrasonography suspected a malignant lesion and a diagnosis of poorly differentiated carcinoma was made on fine needle aspiration cytology. Modified radical mastectomy was carried out. Histopathological examination revealed a high grade stromal sarcoma with rhabdoid morphology and multinucleated tumor giant cells. The tumor cells were strongly positive for desmin, vimentin and Myo D1 focally. The tumor cells were immunonegative for cytokeratin, epithelial membrane antigen (EMA), CD34, CD45, SMA, S100, CD68 and HMB45. A final diagnosis of PRMS was rendered. Surgical margins were free and no metastasis was seen in axillary lymph nodes. Neither post-operative radiotherapy nor adjuvant chemotherapy was given and the patient has remained disease free 12 months post-operatively.

15.
J Agric Food Chem ; 72(18): 10247-10256, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683760

RESUMO

Some forage legumes synthesize phytoestrogens. We conducted a glasshouse study to investigate how water stress (drought and waterlogging) influences phytoestrogen accumulation in red clover and kura clover. Compared to the red clover control, the 20 day drought resulted in an over 100% increase in the phytoestrogens formononetin and biochanin A, which together accounted for 91-96% of the total phytoestrogens measured. Waterlogging resulted in elevated concentrations of daidzein, genistein, and prunetin but not formononetin or biochanin A. Concentrations of phytoestrogens in kura clover were low or undetectable, regardless of water stress treatment. Leaf water potential was the most explanatory single-predictor of the variation in concentrations of formononetin, biochanin A, and total phytoestrogens in red clover. These results suggest that drought-stressed red clover may have higher potential to lead to estrogenic effects in ruminant livestock and that kura clover is a promising alternative low- or no-phytoestrogen perennial forage legume.


Assuntos
Fitoestrógenos , Trifolium , Trifolium/metabolismo , Trifolium/química , Trifolium/crescimento & desenvolvimento , Fitoestrógenos/metabolismo , Fitoestrógenos/análise , Água/metabolismo , Água/análise , Isoflavonas/metabolismo , Isoflavonas/análise , Secas , Genisteína/análise , Genisteína/metabolismo
16.
Arch Physiol Biochem ; 129(1): 95-107, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32730131

RESUMO

Metabolic syndrome (MetS), i.e. a cluster of physiological and biochemical abnormalities can lead to diabetic nephropathy (DN). Insulin resistance, impaired fasting glucose are the main signs and symptoms of MetS. Excess sugar can induce various substantial structural changes like formation of advanced glycation end products (AGEs). AGEs are formed due to reaction of reducing sugars with amino groups of proteins, lipids and nucleic acids. AGEs when bound to the receptor for advanced glycation end products (RAGE) activate increased production of pro-inflammatory markers like interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) along with induction of endoplasmic reticulum (ER) stress. Accumulation of AGEs, enhanced reactive oxygen species (ROS) generation and activation of protein kinase C (PKC), are considered to induce glomerular hypertrophy, podocyte apoptosis, therefore contributing to the development and progression of DN. In this review, we decipher different biochemical and physiological factors that link AGEs and DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Resistência à Insulina , Síndrome Metabólica , Humanos , Nefropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Front Immunol ; 14: 1205821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841267

RESUMO

Alcoholic liver disease (ALD) poses a significant threat to human health, with excessive alcohol intake disrupting the immunotolerant environment of the liver and initiating a cascade of pathological events. This progressive disease unfolds through fat deposition, proinflammatory cytokine upregulation, activation of hepatic stellate cells, and eventual development of end-stage liver disease, known as hepatocellular carcinoma (HCC). ALD is intricately intertwined with stress mechanisms such as oxidative stress mediated by reactive oxygen species, endoplasmic reticulum stress, and alcohol-induced gut dysbiosis, culminating in increased inflammation. While the initial stages of ALD can be reversible with diligent care and abstinence, further progression necessitates alternative treatment approaches. Herbal medicines have shown promise, albeit limited by their poor water solubility and subsequent lack of extensive exploration. Consequently, researchers have embarked on a quest to overcome these challenges by delving into the potential of nanoparticle-mediated therapy. Nanoparticle-based treatments are being explored for liver diseases that share similar mechanisms with alcoholic liver disease. It underscores the potential of these innovative approaches to counteract the complex pathogenesis of ALD, providing new avenues for therapeutic intervention. Nevertheless, further investigations are imperative to fully unravel the therapeutic potential and unlock the promise of nanoparticle-mediated therapy specifically tailored for ALD treatment.


Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/terapia , Etanol
18.
Plant Physiol Biochem ; 202: 107910, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531852

RESUMO

Silkworm larvae mainly consume mulberry leaves; therefore, mulberry cultivation is important for the production of raw silk. Drought stress and micronutrient deficiency (Zn) are known to affect the propagation of mulberry cuttings. In this purview, the current investigation attempted to inspect the efficacy of different concentrations of zinc oxide nano-flower (ZnNFs) applied through both soil admixture and foliar spray on the propagation of mulberry cuttings grown under deficit irrigation regimes. The overall results demonstrated that the ZnNF-treated plant cuttings were well-adapted to drought stress and performed better in comparison to the control set. Out of the tested concentrations - ZnNF-10 (applied as 10 mg/kg soil and 10 ppm as foliar spray thrice) was found to be optimum, showing relatively better initial root establishment, the emergence of leaves, and survival and sprouting percentage. Further studies also confirmed an improvement in the accumulation of photosynthetic pigments, carbohydrates, and protein content even under extreme drought conditions. Most importantly, the ZnNF-10 treatment contributed to ROS detoxification and cell membrane protection by enhancing the pool of antioxidant enzymes. The study further demonstrated that ZnNF-10 application enhanced zinc content by 147.50%, 179.49%, and 171.99% in root, shoot, and leaves of the treated cuttings; thereby, improving the bioaccumulation factor of the plant parts. All of these interactive phenomena led to an increment in shoot height, biomass, leaf area, and leaf number of cuttings. These findings, therefore, indicated that ZnNFs can be developed as a promising nano-fertilizer for mulberry growth facilitating Zn uptake and mitigation of drought-induced complications.


Assuntos
Morus , Óxido de Zinco , Secas , Zinco/metabolismo , Solo
19.
Sci Rep ; 13(1): 11040, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419934

RESUMO

An investigation was carried out to evaluate the effect of graphene quantum dots (GQD) and its nanocomposites on germination, growth, biochemical, histological, and major ROS detoxifying antioxidant enzyme activities involved in salinity stress tolerance of wheat. Seedlings were grown on nutrient-free sand and treatment solutions were applied through solid matrix priming and by foliar spray. Control seedlings under salinity stress exhibited a reduction in photosynthetic pigment, sugar content, growth, increased electrolyte leakage, and lipid peroxidation, whereas iron-manganese nanocomposites doped GQD (FM_GQD) treated seedlings were well adapted and performed better compared to control. Enzymatic antioxidants like catalase, peroxidase, glutathione reductase and NADPH oxidase were noted to increase by 40.5, 103.2, 130.19, and 141.23% respectively by application of FM_GQD. Histological evidence confirmed a lower extent of lipid peroxidation and safeguarding the plasma membrane integrity through osmolyte accumulation and redox homeostasis. All of these interactive phenomena lead to an increment in wheat seedling growth by 28.06% through FM_GQD application. These findings highlight that micronutrient like iron, manganese doped GQD can be a promising nano-fertilizer for plant growth and this article will serve as a reference as it is the very first report regarding the ameliorative role of GQD in salt stress mitigation.


Assuntos
Grafite , Pontos Quânticos , Antioxidantes/metabolismo , Triticum , Grafite/farmacologia , Manganês/metabolismo , Estresse Salino , Plântula
20.
J Biol Chem ; 286(15): 13460-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21357416

RESUMO

The anti-inflammatory effects of globular adiponectin (gAcrp) are mediated by IL-10/heme oxygenase 1 (HO-1)-dependent pathways. Although full-length (flAcrp) adiponectin also suppresses LPS-induced pro-inflammatory signaling, its signaling mechanisms are not yet understood. The aim of this study was to examine the differential mechanisms by which gAcrp and flAcrp suppress pro-inflammatory signaling in macrophages. Chronic ethanol feeding increased LPS-stimulated TNF-α expression by Kupffer cells, associated with a shift to an M1 macrophage polarization. Both gAcrp and flAcrp suppressed TNF-α expression in Kupffer cells; however, only the effect of gAcrp was dependent on IL-10. Similarly, inhibition of HO-1 activity or siRNA knockdown of HO-1 in RAW264.7 macrophages only partially attenuated the suppressive effects of flAcrp on MyD88-dependent and -independent cytokine signatures. Instead, flAcrp, acting via the adiponectin R2 receptor, potently shifted the polarization of Kupffer cells and RAW264.7 macrophages to an M2 phenotype. gAcrp, acting via the adiponectin R1 receptor, was much less effective at eliciting an M2 pattern of gene expression. M2 polarization was also partially dependent on AMP-activated kinase. flAcrp polarized RAW264.7 macrophages to an M2 phenotype in an IL-4/STAT6-dependent mechanism. flAcrp also increased the expression of genes involved in oxidative phosphorylation in RAW264.7 macrophages, similar to the effect of flAcrp on hepatocytes. In summary, these data demonstrate that gAcrp and flAcrp utilize differential signaling strategies to decrease the sensitivity of macrophages to activation by TLR4 ligands, with flAcrp utilizing an IL-4/STAT6-dependent mechanism to shift macrophage polarization to the M2/anti-inflammatory phenotype.


Assuntos
Imunidade Inata/efeitos dos fármacos , Células de Kupffer/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adiponectina/imunologia , Adiponectina/metabolismo , Adiponectina/farmacologia , Animais , Linhagem Celular , Depressores do Sistema Nervoso Central/efeitos adversos , Depressores do Sistema Nervoso Central/farmacologia , Citocinas/imunologia , Citocinas/metabolismo , Etanol/efeitos adversos , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Heme Oxigenase (Desciclizante)/imunologia , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/imunologia , Heme Oxigenase-1/metabolismo , Imunidade Inata/imunologia , Células de Kupffer/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT6/imunologia , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa