Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4369-4375, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38393831

RESUMO

The superconducting coplanar waveguide (SCPW) cavity plays an essential role in various areas like superconducting qubits, parametric amplifiers, radiation detectors, and studying magnon-photon and photon-phonon coupling. Despite its wide-ranging applications, the use of SCPW cavities to study various van der Waals 2D materials has been relatively unexplored. The resonant modes of the SCPW cavity exquisitely sense the dielectric environment. In this work, we measure the charge compressibility of bilayer graphene coupled to a half-wavelength SCPW cavity. Our approach provides a means to detect subtle changes in the capacitance of the bilayer graphene heterostructure, which depends on the compressibility of bilayer graphene, manifesting as shifts in the resonant frequency of the cavity. This method holds promise for exploring a wide class of van der Waals 2D materials, including transition metal dichalcogenides (TMDs) and their moiré, where DC transport measurement is challenging.

2.
Nano Lett ; 22(4): 1665-1671, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35147441

RESUMO

As the magnetic field penetrates the surface of a superconductor, it results in the formation of flux vortices. It has been predicted that the flux vortices will have a charged vortex core and create a dipolelike electric field. Such a charge trapping in vortices is particularly enhanced in high-Tc superconductors (HTS). Here, we integrate a mechanical resonator made of a thin flake of HTS Bi2Sr2CaCu2O8+δ into a microwave circuit to realize a cavity-electromechanical device. Due to the exquisite sensitivity of cavity-based devices to the external forces, we directly detect the charges in the flux vortices by measuring the electromechanical response of the mechanical resonator. Our measurements reveal the strength of surface electric dipole moment due to a single vortex core to be approximately 30 |e|aB, equivalent to a vortex charge per CuO2 layer of 3.7 × 10-2|e|, where aB is the Bohr radius and e is the electronic charge.

3.
Nano Lett ; 22(9): 3612-3619, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35389226

RESUMO

Two-dimensional van der Waals heterostructures (vdWH) can result in novel functionality that crucially depends on interfacial structure and disorder. Bubbles at the vdWH interface can modify the interfacial structure. We probe the dynamics of a bubble at the interface of a graphene-hBN vdWH by using it as the drumhead of a NEMS device because nanomechanical devices are exquisite sensors. For drums with different interfacial bubbles, we measure the evolution of the resonant frequency and spatial mode shape as a function of electrostatic pulling. We show that the hysteretic detachment of layers of vdWH is triggered by the growth of large bubbles. The bubble growth takes place due to the concentration of stress resembling the initiation of fracture. The small bubbles at the heterostructure interface do not result in delamination as they are smaller than a critical fracture length. We provide insight into frictional dynamics and interfacial fracture of vdWH.

4.
Exp Parasitol ; 239: 108286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660529

RESUMO

Leishmania donovani, an obligate intracellular parasite, the causative agent of visceral leishmaniasis is known to subvert the host immune system for its own survival. Although the precise mechanism is still unknown, emerging evidences indicate that L. donovani efficiently suppress MHC I mediated antigen presentation, rendering inadequate CD8+T cell activation and weakening host defense against parasite. The role of transcription factor EB (TFEB) was recognized in modulating antigen presentation besides its role in lysosomal biogenesis and function. Here, we investigated the regulatory role of TFEB in the modulation of presentation of Leishmania antigen in host tissue. Our results showed an increased expression of TFEB after Leishmania infection both in vitro and in vivo and there was a decrease in the expression of Th-1 cytokine IFNγ along with MHC class I and CD8+T cells indicating attenuation of cell mediated immunity and possibly MHC I restricted antigen presentation. Silencing of TFEB resulted in increased expression of IFNγ and MHC I along with increased CD8+T cells population without any significant change in CD4+T cell number. We also observed a decreased parasite burden in TFEB silenced condition which indicates enhanced parasite clearance by alteration of immunological response possibly through induction of presentation of Leishmania antigen through MHC I. The present study explains the role of TFEB silencing in parasite clearance through regulating the antigen presentation of Leishmania antigen thereby promises to formulate a potential therapeutic strategy against visceral leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Apresentação de Antígeno , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Controle de Doenças Transmissíveis , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Transcrição/imunologia
5.
Environ Sci Pollut Res Int ; 30(34): 81386-81402, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35997883

RESUMO

A novel porous spherical-shaped magnesium zinc binary oxide (MZO) was successfully prepared for the first time using a chemical process for fluoride removal and photocatalytic methylene blue (MB) and Congo red (CR) dye degradation. XRD, FESEM, and TEM were studied for phase formation, topographic, crystallographic, and detailed structural information. The surface charge and optical properties of the adsorbent were studied by zeta potential and photoluminescence spectra. The synthesized nano-adsorbents showed high fluoride removal capacity (43.10 mg/g) and photocatalytic activity with a degradation efficiency of 97.83% and 78.40% for MB and CR, respectively. The adsorption was strongly pH-dependent and worked well in the range 6-9. The kinetic studies were performed for both fluoride removal and dye degradation and were found to follow pseudo-second-order and first-order rate law, respectively. The samples were found to be extremely reusable and selective for fluoride removal in presence of co-ions such as NO3-, SO42-, and Cl-. The basic fluoride adsorption process of the samples can be related to ion exchange and electrostatic interactions, according to XPS and FTIR data. The detailed mechanistic study of photocatalytic dye degradation showed that the reaction occurred via OH radicals. Thus, MZO could be considered an effective and quick adsorbent for water purification in fluoride-containing groundwater and industrial dye wastewater.


Assuntos
Vermelho Congo , Óxido de Zinco , Fluoretos , Azul de Metileno/química , Magnésio , Óxido de Magnésio , Zinco , Cinética , Porosidade , Adsorção
6.
Environ Sci Pollut Res Int ; 30(56): 119491-119505, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37930573

RESUMO

A 3D flower-shaped bimetallic nanocomposite zirconium magnesium oxide (ZMO) was prepared first time by the controlled solution combustion method using triethanolamine (TEA) as a fuel and chelating agent. The composite material was used to remove excess fluoride via adsorption. The thermal stability of the adsorbent was characterized by thermogravimetric analysis (TGA). Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) were used to characterize the adsorbent. The surface charge of the nano adsorbent was determined by Zeta Sizer. The surface area and pore volume of the adsorbent were determined by Brunauer-Emmett-Teller (BET) isotherm and Barrett-Joyner-Halenda (BJH) methods. The adsorption behavior of fluoride was studied systematically varying the pH, contact time, adsorbent dose, and initial fluoride concentration. The adsorption followed the Langmuir isotherm model with a maximum adsorption capacity of 42.14 mg/g. The pseudo-second-order kinetic model was confirmed by the adsorption study. The maximum adsorption efficiency was in the 6-10 pH range. The reaction mechanism was mainly based on ion exchange between hydroxy and fluoride ions which was proven by X-ray photoelectron spectroscopy (XPS). Real water tests indicated that ZMO could be used as a potential defluoridation agent for fluoride containing groundwater treatment.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Fluoretos/química , Óxido de Magnésio , Magnésio , Zircônio/análise , Adsorção , Nanocompostos/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
7.
Nat Nanotechnol ; 17(11): 1147-1152, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36309589

RESUMO

Josephson junctions (JJs) and their tunable properties, including their nonlinearities, play an important role in superconducting qubits and amplifiers. JJs together with the circuit quantum electrodynamics architecture form many key components of quantum information processing1. In quantum circuits, low-noise amplification of feeble microwave signals is essential, and Josephson parametric amplifiers (JPAs)2 are the widely used devices. The existing JPAs are based on Al-AlOx-Al tunnel junctions realized in a superconducting quantum interference device geometry, where magnetic flux is the knob for tuning the frequency. Recent experimental realizations of two-dimensional (2D) van der Waals JJs3-5 provide an opportunity to implement various circuit quantum electrodynamics devices6-8 with the added advantage of tuning the junction properties and the operating point using a gate potential. While other components of a possible 2D van der Waals circuit quantum electrodynamics architecture have been demonstrated, a quantum-noise-limited amplifier, an essential component, has not been realized, to the best of our knowledge. Here we implement a quantum-noise-limited JPA using a graphene JJ, that has a linear resonance gate tunability of 3.5 GHz. We report 24 dB amplification with 10 MHz bandwidth and -130 dBm saturation power, a performance on par with the best single-junction JPAs2,9. Importantly, our gate-tunable JPA works in the quantum-limited noise regime, which makes it an attractive option for highly sensitive signal processing. Our work has implications for novel bolometers; the low heat capacity of graphene together with JJ nonlinearity can result in an extremely sensitive microwave bolometer embedded inside a quantum-noise-limited amplifier. In general, this work will open up the exploration of scalable device architectures of 2D van der Waals materials by integrating a sensor with the quantum amplifier.

8.
Adv Mater ; 33(2): e2005105, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33244778

RESUMO

Spin waves are studied for data storage, communication, and logic circuits in the field of spintronics based on their potential to substitute electrons. The recent discovery of magnetism in 2D systems such as monolayer CrI3 and Cr2 Ge2 Te6 has led to a renewed interest in such applications of magnetism in the 2D limit. Here, direct evidence of standing spin waves is presented along with the uniform precessional resonance modes in the van der Waals magnetic material, CrCl3 . This is the first direct observation of standing spin-wave modes, set up along a thickness of 20 mm, in a van der Waals material. Standing spin waves are detected in the vicinity of both branches, optical and acoustic, of the antiferromagnetic resonance. Magnon-magnon coupling and softening of resonance modes with temperature enable extraction of interlayer exchange field as a function of temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa