Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Inorg Chem ; 63(14): 6111-6115, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38522083

RESUMO

Topotactic ion exchange is ubiquitous in the preparation of many metastable solids with layered structures. In recent times, the scope of chimie-douce ion exchange has been extended to quasi-2D and -3D structures including nanocrystals. The low-temperature solid-state exchange is yet another unique synthetic tool to access preconceived structures for the rational design of solids. Although rational synthesis using inorganic synthons is rare, few examples exist among inorganic solids with layered structures. Herein, we extend the scope further by transforming a simple perovskite (ABO3) into a high-pressure quadruple (AA'3B4O12) perovskite. The transformation is achieved at moderate temperatures and ambient pressure via a solid-state metathesis reaction, wherein the transition metal adopts a new A-cation coordination upon exchange. Such coordination switching upon ion exchange will open up possibilities for functionality-driven structural transformations and the rational design of new solids.

2.
Langmuir ; 39(2): 800-812, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36597931

RESUMO

The impact of an oil droplet on a water surface has been explored with the aid of computational fluid dynamics simulations. The study reveals the details of the spatiotemporal evolution of such a ternary system with a triplet of interfaces, e.g., air-water, oil-water, and oil-air, when the impact velocity of the oil droplet with the water surface is high. The oil droplet is found to flatten, spread, stretch, and eventually dewet on the water surface of the deep crater to show a host of interesting post-impact flow morphologies. Furthermore, at higher impact velocities, the formation of a biphasic oil-water crown is observed followed by the ejection of secondary water droplets from the crown tip due to capillary instability. The rapidly spreading oil film on the "crater" of the water surface is found to undergo Kelvin-Helmholtz instability before dewetting the same due to cohesion failure. Subsequently, the formation of an array of secondary oil droplets is observed during the process of dewetting. The dominant wavelength evaluated from the linear stability analysis of a representative flow system could faithfully predict the simulated spacing of dewetted oil droplets floating on the crater. Importantly, the variations in Laplace pressure around the curvatures of the undulatory interfaces along with sharp viscosity gradients across the three-phase contact line is found to engender interesting recirculation patterns, which eventually shed to form a coherent wake region in air near the crater. We also uncover the conditions under which the counter-rotating vortices shed along the oil-water interface resembling a von Kármán vortex street.

3.
Langmuir ; 39(12): 4518-4529, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917688

RESUMO

The over-dependence of human society on fossil fuels for energy is exhausting the level of such non-renewable energy sources. Alternative energy storage systems have gained more popularity recently to counter this issue. In this context, we report the fabrication of N-doped carbon dot (N-CD)-decorated ZnO-based electrodes for supercapacitor applications. Due to the light-responsive nature of the N-CDs and ZnO, the electrode was also responsive under the influence of UV light. After the experimental tests, it was found that the areal capacitance value of the supercapacitor increased upto ∼58.9% when illuminated compared to that under the dark conditions. Moreover, the device showed a maximum areal capacitance of 2.6 mF/cm2 after photocharging and galvanostatically discharging at a current density value of 1.6 µA/cm2, which is quite comparable with the previously reported data. The doping of N-CDs with ZnO showed a significant improvement in the areal capacitance value under both illuminated (∼58.64%) and dark conditions (∼22.08%) compared to the case of pristine ZnO, which justifies the purpose of attaching N-CDs with ZnO. Therefore, in brief, we have fabricated a photoresponsive electrode material for supercapacitor application by combining N-CDs and ZnO. An explicit electrochemical characterization of the electrode was also done to identify the contribution from diffusion-controlled capacitance and double layer capacitance, and it was observed that the diffusion-controlled capacitance gets reduced from 59.1 to 33.6% when the scan rate is increased from 2 to 75 mV/s. Moreover, a detailed study has also been done to understand the reaction mechanism. It was confirmed that the defects in the electrode material played a vital role in the intercalation of K+ ions.

4.
Chaos ; 33(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874880

RESUMO

Birhythmicity is evident in many nonlinear systems, which include physical and biological systems. In some living systems, birhythmicity is necessary for response to the varying environment while unnecessary in some physical systems as it limits their efficiency. Therefore, its control is an important area of research. This paper proposes a space-dependent intermittent control scheme capable of controlling birhythmicity in various dynamical systems. We apply the proposed control scheme in five nonlinear systems from diverse branches of natural science and demonstrate that the scheme is efficient enough to control the birhythmic oscillations in all the systems. We derive the analytical condition for controlling birhythmicity by applying harmonic decomposition and energy balance methods in a birhythmic van der Pol oscillator. Further, the efficacy of the control scheme is investigated through numerical and bifurcation analyses in a wide parameter space. Since the proposed control scheme is general and efficient, it may be employed to control birhythmicity in several dynamical systems.

5.
Soft Matter ; 18(21): 4102-4117, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35579045

RESUMO

We computationally explore the effects of pre-impact shape of an oil droplet on the spatiotemporal dynamics after the droplet impacts an air-water interface. Simulations reveal that the initial shape of the impacting oil-droplet alters the post-impact transient flow structures during the evolution. The spherical and oblate drop spreads over the crater to manifest interesting flow morphologies including the formation of oil-toroids and compound oil-droplets. However, the prolate drop impinges much deeper into the water pool after impact to create a few more exclusive flow features, such as, interface overturning, vortex shedding and formation of secondary droplets. The temporal variation of the crater depth shows distinct three stage dynamics, which can be explained by the generic energy analysis of the entire system. The combined theoretical and numerical energy analyses reveal the influences of the pre-impact drop shape and their effects on the subsequent energy conversion after the impact takes place. The analysis also reveals that the initial surface and kinetic energies are different for non-spherical droplets than for the spherical ones. The conversion of such excess surface energy due to the non-spherical curvature into kinetic energy dictates the impact and subsequently the crater dynamics of such systems. Such influences largely lead to the exclusive flow patterns demonstrated here. Concisely, this study presents a tri-phasic computational model, which is capable of analyzing the salient features of the impact and splash dynamics of the non-spherical droplets into a water continuum.

6.
Phys Chem Chem Phys ; 22(30): 17412, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32705104

RESUMO

Correction for 'Citrate combustion synthesized Al-doped CaCu3Ti4O12 quadruple perovskite: synthesis, characterization and multifunctional properties' by Kamalesh Pal et al., Phys. Chem. Chem. Phys., 2020, 22, 3499-3511, DOI: 10.1039/C9CP05005A.

7.
Phys Chem Chem Phys ; 22(6): 3499-3511, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31993602

RESUMO

The facile synthesis of the Al-doped CaCu3Ti4O12 quadruple perovskite, a well-known and vastly studied material for various technological applications, using the modified citrate combustion route along with structural, microstructural, and X-ray photoelectron spectroscopic (XPS) characterization and magnetic, dielectric and electrical properties has been investigated and reported here. The possible applications of the material as a Schottky barrier diode (SBD) in optoelectronic devices and as a catalyst in methanol steam reforming (MSR) reaction for hydrogen generation, hitherto unreported in the open literature, have also been explored. The compound is crystallized in the cubic body centered Im3[combining macron] space group and the particle size is found to be in nanodimension with rather narrow size distribution. The enhanced resistivity could be attributed to the grain boundary effect, and consequently, it exhibits better performance as a SBD compared to the undoped sample. Desired cationic composition with expected valence states within the probe range is confirmed by XPS analysis. A better catalytic activity towards MSR is noticed for the Al-doped CaCu3Ti4O12 compared to the undoped composition. These new findings, namely MSR activity and applicability in the Schottky device, have highlighted further the multifunctional nature of the material in energy related issues and would thus be of interest to the materials community searching for functional materials.

8.
J Environ Manage ; 258: 110032, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929067

RESUMO

This study focuses on the photocatalytic degradation of quinoline, a recalcitrant heterocyclic nitrogenous aromatic organic compound, using the mixed oxide ZnO-TiO2 photo-catalyst. Photo-catalysts were synthesized by the solid-state reaction method at different calcination temperatures of 400 °C, 600 °C, and 800 °C. Different analytical methods, including Field emission scanning electron microscope, Brunauer-Emmett-Teller surface area, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy analysis were used for the catalyst characterization. The highest pore surface area of 57.9 m2g-1 was obtained for the photo-catalyst calcined at 400 °C. The effects of calcination temperature, solution pH, initial concentration, catalyst dose as well as irradiation time were studied. At the optimum condition, i.e., calcination temperature of 400 °C, pH ≈8 and catalyst dose of 2.5 gL-1, maximum quinoline degradation and total organic carbon (TOC) removal efficiency of ≈92% and ≈78% were obtained after 240 min for initial quinoline amount of 50 mgL-1. The 1st, 2nd, and nth-order kinetic models were applied to analyze the quinoline degradation rate. The photocatalytic mechanism was studied by drawing energy level diagram with the help of the band-gap structures of the ZnO and TiO2, potential of the free radicals like OH and O2 and HOMO-LUMO energy gap of the quinoline molecule. The proposed pathways of quinoline mineralization were suggested on the basis of the identified intermediates by the gas chromatograph-mass spectrometer analysis and scavenger study.


Assuntos
Quinolinas , Óxido de Zinco , Catálise , Óxidos , Titânio , Difração de Raios X
9.
Inorg Chem ; 58(5): 2921-2924, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30784275

RESUMO

Topotactic ion exchange in open-framework solids and oxides with layered and tunnel structures has resulted in the formation of a variety of metastable functional materials that are inaccessible otherwise. These ion exchanges are primarily limited to the above structure types because of the presence of labile ions as loosely held charge-compensating cations/anions as in the framework or tunnel structures or the lability of the ions/charged motifs in interlayer galleries of layered oxides. While such topotactic exchanges are common in the above structure types, they are rare in the three-dimensional (3D) close-packed structures based solely on corner- and/or edge-connected polyhedral networks. Herein, we demonstrate divalent iron exchange in a close-packed all-octahedral-coordinated trirutile oxide. This has enabled the transformation of a near-ultraviolet-absorbing diamagnetic insulating oxide into a visible-light-active paramagnetic semiconductor. An ion exchange of this kind may open up avenues for the development of metastable functional oxides with a variety of other 3D structures and diverse properties.

10.
Mikrochim Acta ; 186(12): 833, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758334

RESUMO

A modified method is described for the preparation of amino-functionalized covalent organic framework nanosheets (COF-NSs). These consist of hexagonal layered sheets and were prepared from commercially available starting materials (p-phenylenediamine and benzene-1,3,5-tricarboxaldehyde). The interlayer stacking interactions between the ultra-thin COF-NSs became weak because the π stacking is destroyed by sonication. This result in the exfoliation of COF-NSs. As an application, the COF-NSs used for sensitive and selective fluorometric determination of DNA. To reach this goal, H1 and H2 hairpin-like DNA probes were chosen; H1 used Texas Red-labeled dye as a fluorescent probe. The addition of the COF-NSs, the hairpin probes was adsorbed onto the porous surface of the COFNSs. The π stacking and hydrogen-bond interactions between COFNSs and nucleic acid quench the fluorescence of the Texas red-labeled probe. The target DNA enables the recovery of the quenched fluorescence of the Texas red-labelled probe by triggering an inter-chain hybridization within hairpin probes. This results in a weaker interaction of double-stranded DNA (dsDNA) with the COFNSs. Consequently, the dsDNA detaches from the COFNSs, thereby recovering the dye's fluorescence (excitation/emission maxima at 590/612 nm) with increasing target DNA concentration. The findings were applied to design a method for the determination of DNA that has a 2 pM detection limit. This is significantly lower than the limit of detection reported previously for 2D nanomaterial-based fluorometric DNA assays. Graphical abstractSchematic representation of 2D-covalent organic framework nanosheets (COF-NSs) probe act as a quencher allowing the highly sensitive and selective fluorescence turn-on detection for biomolecules. Here the H1 H2 are hairpin DNAs. H1 is associated with the fluorescent tag (red circle), while the "fluorescence off" state it denoted as a black circle.


Assuntos
Aldeídos/química , DNA/análise , Fluorometria , Estruturas Metalorgânicas/química , Sondas Moleculares/química , Nanopartículas/química , Fenilenodiaminas/química , Técnicas Biossensoriais , Humanos , Estrutura Molecular , Técnicas de Amplificação de Ácido Nucleico , Tamanho da Partícula , Sensibilidade e Especificidade , Propriedades de Superfície
11.
Electrophoresis ; 38(11): 1450-1457, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27747893

RESUMO

We report a facile and noninvasive way to disintegrate a microdroplet into a string of further miniaturized ones under the influence of an external electrohydrodynamic field inside a microchannel. The deformation and breakup of the droplet was engendered by the Maxwell's stress originating from the accumulation of induced and free charges at the oil-water interface. While at smaller field intensities, for example less than 1 MV/m, the droplet deformed into a plug, at relatively higher field intensities, e.g. ∼1.16 MV/m, a pair of droplets having opposite surface charge was formed. The charged droplets showed an interesting periodic bridging and breakup during their translation motion across the channel. For even higher field intensities, for example more than 1.2 MV/m, the entire droplet underwent dielectrophoresis toward one of the electrodes before experiencing a strong attractive force from the other electrode to deform into a shape of a Taylor cone. With progress in time, mimicking the electrospraying phenomenon, the cone tip periodically ejected a string of miniaturized water droplets to form a microemulsion inside the channel. The frequency and size of the droplet ejection could be tuned by varying the applied field intensity. A water droplet of ∼214 µm diameter could continuously eject droplets of size ∼10 µm or even smaller to form a microemulsion inside the channel.


Assuntos
Eletroforese em Microchip , Dispositivos Lab-On-A-Chip , Tamanho da Partícula , Simulação por Computador , Eletricidade , Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Desenho de Equipamento , Microfluídica , Miniaturização , Modelos Teóricos , Silício
12.
Electrophoresis ; 38(2): 278-286, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436402

RESUMO

Numerical simulations supplemented by experiments together uncovered that strategic integration of discrete electric fields in a non-invasive manner could substantially miniaturize the droplets into smaller parts in a pressure driven oil-water flow inside microchannels. The Maxwell's stress generated from the electric field at the oil-water interface could deform, stretch, neck, pin, and disintegrate a droplet into many miniaturized daughter droplets, which eventually ushered a one-step method to form water-in-oil microemulsion employing microchannels. The interplay between electrostatic, inertial, capillary, and viscous forces led to various pathways of droplet breaking, namely, fission, cascade, or Rayleigh modes. While a localized electric field in the fission mode could split a droplet into a number of daughter droplets of smaller size, the cascade or the Rayleigh mode led to the formation of an array of miniaturized droplets when multiple electrodes generating different field intensities were ingeniously assembled around the microchannel. The droplets size and frequency could be tuned by varying the field intensity, channel diameter, electrode locations, interfacial tension, and flow ratio. The proposed methodology shows a simple methodology to transform a microdroplet into an array of miniaturized ones inside a straight microchannel for enhanced mass, energy, and momentum transfer, and higher throughput.


Assuntos
Técnicas Analíticas Microfluídicas , Modelos Teóricos , Simulação por Computador , Eletricidade , Óleos de Silicone/química , Água/química
13.
Phys Chem Chem Phys ; 18(20): 13974-83, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27150335

RESUMO

The dependence of the lattice parameter on dopant concentration in Ce1-xMxO2 (M = Sn and Ti) solid solutions is not linear. A change towards a steeper slope is observed around x ∼ 0.35, though the fluorite structure (space group Fm3m) is preserved up to x = 0.5. This phenomenon has not been observed for Ce1-xZrxO2 solid solutions showing a perfectly linear decrease of the lattice parameter up to x = 0.5. In order to understand this behavior, the oxidation state of the metal ions, the disorder in the oxygen substructure and the nature of metal-oxygen bonds have been analyzed by XPS, (119)Sn Mössbauer spectroscopy and X-ray absorption spectroscopy. It is observed that the first Sn-O coordination shell in Ce1-xSnxO2 is more compact and less flexible than that of Ce-O. The Sn coordination remains symmetric with eight equivalent, shorter Sn-O bonds, while Ce-O coordination gradually splits into a range of eight non-equivalent bonds compensating for the difference in the ionic radii of Ce(4+) and Sn(4+). Thus, a long-range effect of Sn doping is hardly extended throughout the lattice in Ce1-xSnxO2. In contrast, for Ce1-xZrxO2 solid solutions, both Ce and Zr have similar local coordination creating similar rearrangement of the oxygen substructure and showing a linear lattice parameter decrease up to 50% Zr substitution. We suggest that the localized effect of Sn substitution due to its higher electronegativity may be responsible for the deviation from Vegard's law in Ce1-xSnxO2 solid solutions.

14.
J Environ Manage ; 181: 146-156, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27341375

RESUMO

Present study demonstrates reutilization of electrochemical (EC) sludge as a potential low-cost green catalyst for dye degradation. Hexagonal Fe2O3 type phase with trevorite (NiFe2O4)-type cubic phase nanocomposite material (NCM) was synthesized from solid waste sludge generated during EC treatment of textile industry wastewater with stainless steel electrode. For NCM synthesis, sludge was heated at different temperatures under controlled condition. Various synthesized NCMs were characterized by powder X-ray diffraction (PXD), energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis. The synthesized NCMs were found to contain iron, chromium, nickel and oxygen in the form of α-Fe2O3 (metal: oxygen = 40:60), (Fe,Cr,Ni)2O3 and trevorite NiFe2O4, (Ni,Fe,Cr) (Fe,Cr,Ni)2O4 (metal: oxygen = 43:57). Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), pore size distribution, and atomic force microscope (AFM) analysis showed distribution of grains of different shapes and sizes. Catalytic activity of NCM was studied by the methylene red dye degradation by using the catalytic wet peroxidation process. Zeta potential study was performed under different pH so as to determine the performance of the NCMs during dye degradation.


Assuntos
Corantes/química , Poluentes Ambientais/química , Nanocompostos/química , Óxidos/química , Esgotos/química , Indústria Têxtil , Águas Residuárias/química , Catálise , Cromo/química , Corantes/análise , Poluentes Ambientais/análise , Compostos Férricos/análise , Compostos Férricos/química , Ferro/química , Microscopia Eletrônica de Varredura , Níquel/química , Espectroscopia Fotoeletrônica , Difração de Raios X
15.
Artigo em Inglês | MEDLINE | ID: mdl-26325662

RESUMO

The present study reports use of the catalytic peroxidation (CPO) method for treatment of actual fertilizer industry wastewater (FIW) by using copper-loaded Santa Barbara amorphous-15 (Cu/SBA-15) catalyst. FIW consists of toxic nitrogenous and phosphorus containing compounds that are not easily degraded by the conventional physicochemical and biological treatment methods. In the present study, Box-Behnken (BB) experimental design methodology was used for optimization of three independent parameters namely catalytic dose (m), initial pH (pHo), and H2O2 concentration. Maximum 83% COD removal was obtained at m = 4.5 g L(-1), pHo = 9.2 and H2O2 concentration = 2.0 mL L(-1). Wastewater and catalyst recovered at optimum treatment condition were characterized by various techniques. UV-visible and Fourier transform infrared (FTIR) techniques were used for understanding the treatment mechanism. Textural and thermogravimetric (TGA/DTA) analysis were used for determining the characteristic of catalyst before and after treatment. The stability and performance of the Cu/SBA-15 catalyst was also determined by using the reusability tests.


Assuntos
Cobre/química , Fertilizantes/análise , Dióxido de Silício/química , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Catálise , Peróxido de Hidrogênio/metabolismo
16.
Electrophoresis ; 35(20): 2930-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044128

RESUMO

Strategic application of external electrostatic field on a pressure-driven two-phase flow inside a microchannel can transform the stratified or slug flow patterns into droplets. The localized electrohydrodynamic stress at the interface of the immiscible liquids can engender a liquid-dielectrophoretic deformation, which disrupts the balance of the viscous, capillary, and inertial forces of a pressure-driven flow to engender such flow morphologies. Interestingly, the size, shape, and frequency of the droplets can be tuned by varying the field intensity, location of the electric field, surface properties of the channel or fluids, viscosity ratio of the fluids, and the flow ratio of the phases. Higher field intensity with lower interfacial tension is found to facilitate the oil droplet formation with a higher throughput inside the hydrophilic microchannels. The method is successful in breaking down the regular pressure-driven flow patterns even when the fluid inlets are exchanged in the microchannel. The simulations identify the conditions to develop interesting flow morphologies, such as (i) an array of miniaturized spherical or hemispherical or elongated oil drops in continuous water phase, (ii) "oil-in-water" microemulsion with varying size and shape of oil droplets. The results reported can be of significance in improving the efficiency of multiphase microreactors where the flow patterns composed of droplets are preferred because of the availability of higher interfacial area for reactions or heat and mass exchange.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Simulação por Computador , Eletricidade , Desenho de Equipamento , Interações Hidrofóbicas e Hidrofílicas , Técnicas Analíticas Microfluídicas/métodos , Modelos Teóricos , Reprodutibilidade dos Testes
17.
Dalton Trans ; 53(12): 5484-5494, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415329

RESUMO

Electrochemical water splitting, which is a highly promising and environmentally friendly technology for H2 fuel production, faces significant hurdles due to the sluggish kinetics of the oxygen evolution reaction. Co -based oxides have garnered significant attention as alternative catalysts for the oxygen evolution reaction owing to the Co2+/Co3+ redox couple. Enhancing the challenging Co2+ → Co3+ oxidation process can further improve the catalytic oxygen evolution reaction. The aim of our work was to design a Co3O4-based catalyst to enhance reactivity by increasing the number of Co3+ active sites, serving as an excellent platform for facilitating the oxygen evolution reaction. To drive the effectiveness of the catalyst, in this study, we synthesized Co3O4 anchored on CeO2 (Co3O4/CeO2). The kinetics and efficacy of the oxygen evolution reaction catalysed by Co3O4/CeO2 was significantly improved by aliovalent doping of Sr into Ce sites and Cu into Co sites. The reducible nature of Ce stimulates the formation of Co3+ ions, resulting in an increased production of intermediate -OOH species, thus expediting the reaction. The transformation of Co2+ to Co3+ consequently leads to an increase in anion vacancies, which, in turn, promotes the adsorption of more intermediate species at the active site. The Sr- and Cu-doped Co3O4/CeO2 catalyst exhibited a high current density of 200 mA cm-2 at 580 mV and a low overpotential of 297 mV at 10 mA cm-2. The study functions as a key indicator to establish a connection between oxygen vacancies and metal oxidation states in order to investigate the mechanistic aspects of the oxygen evolution reaction on mixed metal oxides. Moreover, this study is expected to pave the way for the development of innovative oxygen evolution reaction catalysts with reducible supports, thus offering a new pathway for their design.

18.
Dalton Trans ; 53(26): 11060-11070, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885128

RESUMO

Quadruple perovskites with high magnetic transition temperatures are an interesting class of compounds but are synthesized typically under high pressure. Ambient pressure synthesis of new multinary quadruple perovskites having a high global instability index (GII) and transition temperature can be interesting for future exploration of high-TC oxides. A new A- and B-site ordered multinary quadruple perovskite, LaCu3Fe2RuSbO12, is synthesized by conventional solid-state reactions at ambient pressure. Rietveld structure refinement revealed that the compound crystallizes in the Pn3̄ space group with a lattice parameter of 7.4556(4) Å. The compound showed complete 1 : 3 ordering of La and Cu at the A-site and 1 : 1 rock-salt ordering of Fe with Ru/Sb at the B-site. The compound is also probed with scanning and transmission electron microscopy and XPS to investigate the chemical composition, microstructure, lattice and oxidation states of the elements. Magnetic studies revealed antiferromagnetic (AFM) correlations with magnetic ordering transitions at ∼170 and 40 K. Furthermore, the M-H hysteretic behavior at 100 and 5 K indicated ferrimagnetism due to short-range AFM interactions among Fe3+(3d5) and Ru4+(4d4) spins involving Cu2+(↑)-Fe3+(↓)-Ru4+(↑) triads. The specific heat data reaffirmed the magnetic signatures while electrical transport showed semiconducting behavior with variable range hopping. The details of synthesis and structural and compositional studies along with the magnetic and electrical transport properties of LaCu3Fe2RuSbO12 are reported in this paper.

19.
Nanomaterials (Basel) ; 14(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998691

RESUMO

Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.

20.
J Nanosci Nanotechnol ; 13(10): 6499-505, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24245106

RESUMO

It is since long that X-ray or magnetic resonance imaging is being used for biomedical diagnosis. But till date noninvasive soft tissue imaging is not very well established. Towards this end the dietary uptake of polyelectrolyte carbon quantum dots (PECQDs) and their uses as a fluorescent probe is a new approach for imaging live specimens. In the present study we demonstrate that polyelectrolyte carbon quantum dots, which are nontoxic and have fluorescence properties can be used for in vivo imaging of internal organs. Carbon quantum dots surface were abound in polymer of free carboxyl groups making it water soluble. Our used PECQDs are less than equal to 50 nm sized and are capable to emit multi colour fluorescence. It is synthesized from waste plant materials like shaded leaves, unused shrubs, herbs etc. An exposure of 1 ppm level of soluble carbon quantum dots for 12 hours in drosophila permitted the fluorescence microscopy imaging of the different stages of their development and their non invasive internal organs without any remarkable toxic effects. Finally the fluorescent material was found to be excreted out of the animals. The current data suggests that visualization of internal organs with a fluorescent probe in live cells could help in determining the efficacy of therapeutic treatments directly without the need of any invasive procedures.


Assuntos
Carbono/química , Eletrólitos/química , Pontos Quânticos , Animais , Drosophila melanogaster , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Sondas Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa