Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 230(1): 63-70, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24891298

RESUMO

Understanding the mechanisms that sustain pluripotency in human embryonic stem cells (hESCs) is an active area of research that may prove useful in regenerative medicine and will provide fundamental information relevant to development and cancer. hESCs and cancer cells share the unique ability to proliferate indefinitely and rapidly. Because the protein survivin is uniquely overexpressed in virtually all human cancers and in hESCs, we sought to investigate its role in supporting the distinctive capabilities of these cell types. Results presented here suggest that survivin contributes to the maintenance of pluripotency and that post-transcriptional control of survivin isoform expression is selectively regulated by microRNAs. miR-203 has been extensively studied in human tumors, but has not been characterized in hESCs. We show that miR-203 expression and activity is consistent with the expression and subcellular localization of survivin isoforms that in turn modulate expression of the Oct4 and Nanog transcription factors to sustain pluripotency. This study contributes to understanding of the complex regulatory mechanisms that govern whether hESCs proliferate or commit to lineages.


Assuntos
Células-Tronco Embrionárias/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , MicroRNAs/biossíntese , Células-Tronco Pluripotentes/fisiologia , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Proteínas Inibidoras de Apoptose/biossíntese , Proteínas Inibidoras de Apoptose/genética , MicroRNAs/genética , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/biossíntese , Isoformas de Proteínas/genética , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Survivina
2.
J Cell Physiol ; 226(5): 1149-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20945438

RESUMO

Induced pluripotent stem (iPS) cells derived from terminally differentiated human fibroblasts are reprogrammed to possess stem cell like properties. However, the extent to which iPS cells exhibit unique properties of the human embryonic stem (hES) cell cycle remains to be established. hES cells are characterized by an abbreviated G1 phase (∼ 2.5 h) and accelerated organization of subnuclear domains that mediate the assembly of regulatory machinery for histone gene expression [i.e., histone locus bodies (HLBs)]. We therefore examined cell cycle parameters of iPS cells in comparison to hES cells. Analysis of DNA synthesis [5-bromo-2'-deoxy-uridine (BrdU) incorporation], cell cycle distribution (FACS analysis and Ki67 staining) and subnuclear organization of HLBs [immunofluorescence microscopy and fluorescence in situ hybridization (FISH)] revealed that human iPS cells have a short G1 phase (∼ 2.5 h) and an abbreviated cell cycle (16-18 h). Furthermore, HLBs are formed and reorganized rapidly after mitosis (within 1.5-2 h). Thus, reprogrammed iPS cells have cell cycle kinetics and dynamic subnuclear organization of regulatory machinery that are principal properties of pluripotent hES cells. Our findings support the concept that the abbreviated cell cycle of hES and iPS cells is functionally linked to pluripotency.


Assuntos
Núcleo Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Fase G1 , Células-Tronco Pluripotentes Induzidas/fisiologia , Mitose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Replicação do DNA , Células-Tronco Embrionárias/metabolismo , Fase G1/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização in Situ Fluorescente , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígeno Ki-67/metabolismo , Cinética , Microscopia de Fluorescência , Mitose/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Cell Biol ; 27(9): 3337-52, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17325044

RESUMO

HOXA10 is necessary for embryonic patterning of skeletal elements, but its function in bone formation beyond this early developmental stage is unknown. Here we show that HOXA10 contributes to osteogenic lineage determination through activation of Runx2 and directly regulates osteoblastic phenotypic genes. In response to bone morphogenic protein BMP2, Hoxa10 is rapidly induced and functions to activate the Runx2 transcription factor essential for bone formation. A functional element with the Hox core motif was characterized for the bone-related Runx2 P1 promoter. HOXA10 also activates other osteogenic genes, including the alkaline phosphatase, osteocalcin, and bone sialoprotein genes, and temporally associates with these target gene promoters during stages of osteoblast differentiation prior to the recruitment of RUNX2. Exogenous expression and small interfering RNA knockdown studies establish that HOXA10 mediates chromatin hyperacetylation and trimethyl histone K4 (H3K4) methylation of these genes, correlating to active transcription. HOXA10 therefore contributes to early expression of osteogenic genes through chromatin remodeling. Importantly, HOXA10 can induce osteoblast genes in Runx2 null cells, providing evidence for a direct role in mediating osteoblast differentiation independent of RUNX2. We propose that HOXA10 activates RUNX2 in mesenchymal cells, contributing to the onset of osteogenesis, and that HOXA10 subsequently supports bone formation by direct regulation of osteoblast phenotypic genes.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Fenótipo , Animais , Sequência de Bases , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Proteínas Homeobox A10 , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Interferência de RNA , Transcrição Gênica/genética
4.
J Cell Physiol ; 220(3): 586-92, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19373864

RESUMO

Pluripotent human embryonic stem (hES) cells require mechanisms to maintain genomic integrity in response to DNA damage that could compromise competency for lineage-commitment, development, and tissue-renewal. The mechanisms that protect the genome in rapidly proliferating hES cells are minimally understood. Human ES cells have an abbreviated cell cycle with a very brief G1 period suggesting that mechanisms mediating responsiveness to DNA damage may deviate from those in somatic cells. Here, we investigated how hES cells react to DNA damage induced by ionizing radiation (IR) and whether genomic insult evokes DNA repair pathways and/or cell death. We find that hES cells respond to DNA damage by rapidly inducing Caspase-3 and -8, phospho-H2AX foci, phosphorylation of p53 on Ser15 and p21 mRNA levels, as well as concomitant cell cycle arrest in G2 based on Ki67 staining and FACS analysis. Unlike normal somatic cells, hES cells and cancer cells robustly express the anti-apoptotic protein Survivin, consistent with the immortal growth phenotype. SiRNA depletion of Survivin diminishes hES survival post-irradiation. Thus, our findings provide insight into pathways and processes that are activated in human embryonic stem cells upon DNA insult to support development and tissue regeneration.


Assuntos
Proliferação de Células/efeitos da radiação , Dano ao DNA , Células-Tronco Embrionárias/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia , Caspase 3/metabolismo , Caspase 8/metabolismo , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Humanos , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Survivina , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
J Biol Chem ; 281(52): 40515-26, 2006 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-17060321

RESUMO

Several homeodomain (HD) proteins are critical for skeletal patterning and respond directly to BMP2 as an early step in bone formation. RUNX2, the earliest transcription factor proven essential for commitment to osteoblastogenesis, is also expressed in response to BMP2. However, there is a gap in our knowledge of the regulatory cascade from BMP2 signaling to the onset of osteogenesis. Here we show that BMP2 induces DLX3, a homeodomain protein that activates Runx2 gene transcription. Small interfering RNA knockdown studies in osteoblasts validate that DLX3 is a potent regulator of Runx2. Furthermore in Runx2 null cells, DLX3 forced expression suffices to induce transcription of Runx2, osteocalcin, and alkaline phosphatase genes, thus defining DLX3 as an osteogenic regulator independent of RUNX2. Our studies further show regulation of the Runx2 gene by several homeodomain proteins: MSX2 and CDP/cut repress whereas DLX3 and DLX5 activate endogenous Runx2 expression and promoter activity in non-osseous cells and osteoblasts. These HD proteins exhibit distinct temporal expression profiles during osteoblast differentiation as well as selective association with Runx2 chromatin that is related to Runx2 transcriptional activity and recruitment of RNA polymerase II. Runx2 promoter mutagenesis shows that multiple HD elements control expression of Runx2 in relation to the stages of osteoblast maturation. Our studies establish mechanisms for commitment to the osteogenic lineage directly through BMP2 induction of HD proteins DLX3 and DLX5 that activate Runx2, thus delineating a transcriptional regulatory pathway mediating osteoblast differentiation. We propose that the three homeodomain proteins MSX2, DLX3, and DLX5 provide a key series of molecular switches that regulate expression of Runx2 throughout bone formation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas de Homeodomínio/genética , Osteogênese/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Fator de Crescimento Transformador beta/fisiologia , Animais , Proteína Morfogenética Óssea 2 , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Transformada , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/deficiência , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/fisiologia , Camundongos , Camundongos Knockout , Células NIH 3T3 , Osteogênese/genética , Interferência de RNA , Sequências Reguladoras de Ácido Nucleico/fisiologia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa