RESUMO
Gallesia integrifolia, a notable species in the Atlantic Forest, has been traditionally employed in folk medicine for treating rheumatism, asthma, and worms. This study investigated the cellular antioxidant, antiproliferative, and anti-inflammatory activities of the essential oils (EOs) and crude extracts (CEs) from G. integrifolia flowers, fruits, and leaves. The chemical identification of EOs was performed by GC-MS and CEs by UHPLC-MS. Cellular antioxidant and anti-inflammatory activities were assessed through mouse macrophage cell culture. In addition, the antiproliferative potential was evaluated in gastric, colorectal, breast, and lung tumor cell lines and non-tumor VERO cells. EOs predominantly contained organosulfur compounds in flowers (96.29%), fruits (94.94%), and leaves (90.72%). We found the main compound is 2,2'-Disulfanediyldiethanethiol in the EOs of flowers (47.00%), leaves (41.82%), and fruits (44.39%). Phenolic compounds were identified in CEs. The EOs and CEs demonstrated potential against the tumor cell lines tested (GI50 between 51 and 230 µg/mL). The selectivity index values were greater than 1.0 (1.01 to 3.37), suggesting a relative safety profile. Moreover, the anti-inflammatory activity IC50 ranged from 36.00 to 268 µg/mL, and the cellular oxidation inhibition ranged from 69% to 82%. The results suggest that oils and extracts derived from G. integrifolia have potential for use in various industrial sectors.
Assuntos
Antioxidantes , Óleos Voláteis , Camundongos , Animais , Chlorocebus aethiops , Antioxidantes/farmacologia , Antioxidantes/análise , Frutas , Células Vero , Folhas de Planta/química , Flores/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Óleos Voláteis/química , Extratos Vegetais/químicaRESUMO
Humans often respond to sensory impulses provided by aromas, and current trends have generated interest in natural sources of fragrances rather than the commonly used synthetic additives. For the first time, the resulting aroma of a selected culture of Thymus mastichina L. was studied as a potential food ingredient. In this context, dried (DR) and fresh (FR) samples were submitted to carbon dioxide (CO2) supercritical extraction (SFE) and hydrodistillation (HD) methods. The extracts were characterised according to their volatile composition by GC-MS, cytotoxicity against a non-tumour cell culture, and sensory attributes (odour threshold and olfactive descriptors). The most abundant aromas were quantified, and the analysis performed by GC-MS revealed an abundance of terpenoids such as thymol chemotype, followed by the precursors α-terpinene and p-cymene. DR and FR extracts (EX) obtained from SFE-CO2 show the highest content of thymol, achieving 52.7% and 72.5% of the isolated volatile fraction. The DR essential oil (EO) contained the highest amount of terpenoids, but it was also the most cytotoxic extract. In contrast, SFE-CO2 products showed the lowest cytotoxic potential. Regarding FR-OE, it had the lowest extraction yield and composition in aroma volatiles. Additionally, all samples were described as having green, fresh and floral sensory notes, with no significant statistical differences regarding the odour detection threshold (ODT) values. Finally, FR-EX of T. mastichina obtained by SFE-CO2 presented the most promising results regarding food application.
Assuntos
Extratos Vegetais/farmacologia , Timol/análise , Thymus (Planta)/metabolismo , Antioxidantes/análise , Cromatografia com Fluido Supercrítico/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes , Óleos Voláteis/análise , Perfumes/análise , Extratos Vegetais/isolamento & purificação , Portugal , Solventes/análise , Terpenos/análiseRESUMO
In this work, several benzothiazole-based aminosquaraine dyes, displaying strong absorption within the so-called phototherapeutic window (650â»800 nm), were synthesized. The ability, of all the new dyes, to generate singlet oxygen was assessed by determining the correspondent phosphorescence emission and through the comparison with a standard. The quantum yields of singlet oxygen generation were determined and exhibited to be strongly dependent on the nature of the amino substituents introduced in the squaric ring. The photodynamic activity of the synthesized dyes was tested against four human tumor cell lines: breast (MCF-7), lung (NCI-H460), cervical (HeLa) and hepatocellular (HepG2) carcinomas; and a non-tumor porcine liver primary cell culture (PLP2). All the compounds synthesized were found to be able to inhibit tumor cells growth upon irradiation more than in the dark, in most of the cases, very significantly. Considering the photodynamic activity exhibited and the low toxicity displayed for the non-tumor cells, some of the synthetized dyes can be regarded as potential candidates as photosensitizers for PDT.
Assuntos
Ciclobutanos , Citotoxinas , Hidrocarbonetos Iodados , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Ciclobutanos/síntese química , Ciclobutanos/química , Ciclobutanos/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Células Hep G2 , Humanos , Hidrocarbonetos Iodados/síntese química , Hidrocarbonetos Iodados/química , Hidrocarbonetos Iodados/farmacologia , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , SuínosRESUMO
Cynara cardunculus L. (cardoon) is a wild species of the Mediterranean basin and is highly appreciated due to its rich nutritional value and versatile industrial applications. It is widely known that environmental conditions, such as air temperature, humidity, and solar radiation, among others, play a crucial role in plant phenological variations and the chemical composition and bioactive properties of different plant tissues of cardoon. This study applied several statistical methods to uncover the variations in biomolecules of different cardoon tissues collected in Greece over the growth cycle. The influence of the different seasons on the species is evident, resulting in a clear discrimination between the samples harvested throughout the growth cycle. In addition, the observed fluctuations in chemical composition are consistent with each vegetable tissue's functions and the plant's different physiological processes. This work allows for a better understanding and knowledge of the species, encouraging more profitable and sustainable use of all the plant parts.
RESUMO
Germination is a natural, simple, and economical process used to improve the quality of nutritional and technological grains. In this study, native and sprouted sorghum flours were characterized regarding their technological properties (particle size distribution, water, and oil absorption capacity, swelling power and solubility, microscopy of starch granules, and pasting and thermal properties). Nutritional and phytochemical characterization profiles, including free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds, were explored through chromatographic methods. The antioxidant, anti-inflammatory, and cytotoxic activities of the respective hydroethanolic extracts were also evaluated. The results showed that the germination process caused significant changes in the flour composition and properties, causing reduced gelatinization temperature and retarded starch retrogradation; an increased content of free sugars and total organic acids; and a decreased content of tocopherols and phenolic compounds. In terms of bioactivity, the sprouted sorghum flour extract showed better lipid-peroxidation-inhibition capacity and none of the extracts revealed hepatotoxicity or nephrotoxicity, which are important results for the validation of the use of the flours for food purposes. Germination is an efficient and alternative method for grain modification that gives improved technological properties without chemical modification or genetic engineering.
RESUMO
Wild edible greens are a key ingredient of the so-called Mediterranean diet and they are commonly used in various local dishes in their raw or processed form. Domestic processing of edible greens may affect their nutritional value and chemical profile. In this work, six wild species (e.g., Cichorium spinosum L. (S1); Centaurea raphanina subsp. mixta (DC.) Runemark (S2); Picris echioides (L.) Holub (S3); Urospermum picroides (L.) Scop. ex. F.W. Schmidt (S4); Sonchus oleraceus L. (S5); and S. asper L. (S6)) were assessed for the effect of domestic processing (boiling) on chemical composition and bioactivities. Concerning the chemical composition, glucose, oxalic acid, α-tocopherol, and α-linolenic acid were the most abundant compounds, especially in P. echiodes leaves. After decoction, mainly sugars, tocopherols, and oxalic acid were decreased. The species and processing affected the phenolic compounds content and antioxidant, cytotoxicity, and anti-inflammatory activities. Specific compounds were not previously detected in the studied species, while hydroethanolic extracts contained a higher total phenolic compound content. Hydroethanolic and aqueous extracts were effective towards a range of bacterial and fungi strains. Therefore, the consumption of leaves has health-promoting properties owing to the bioactive compounds and can be integrated into healthy diets. However, domestic cooking may affect the chemical profile and bioactivities of the edible leaves, especially in the case of free sugars and phenolic compound content where a significant reduction was recorded in leaves after decoction. On the other hand, domestic processing could be beneficial since it reduces the oxalic acid content in edible leaves, which is considered an antinutritional factor.
RESUMO
The fruits of Sapindus saponaria L., popularly known as 'saboeiro', have been used in medicine. This study evaluated the antioxidant and antitumor activities of the hydroethanolic extract (HAE) and fractions obtained from the fruit pericarp of S. saponaria. The HAE was obtained from the S. saponaria fruit pericarp by maceration; this was followed by fractionation using reversed-phase solid-phase extraction, resulting in fractions enriched with acyclic sesquiterpenic oligoglycosides (ASOG) and saponins (SAP1, and SAP2), confirmed by mass spectrometry with electrospray ionization (ESI-QTOF-MS). The greatest citotoxic activity was observed with the SAP1 fraction against the CaCo2 cell line with a GI50 of 8.1 µg mL-1, while the SAP2 fraction had a GI50 of 13.6 µg mL-1 against CaCo2. The HAE demonstrated the greatest antioxidant activity. S. saponaria has potential therapeutic use in the pharmaceutical industry as a natural anti-oxidant or antitumor product.
Assuntos
Sapindus , Saponaria , Humanos , Antioxidantes/farmacologia , Antioxidantes/análise , Frutas/química , Sapindus/química , Células CACO-2 , Extratos Vegetais/farmacologia , Extratos Vegetais/análiseRESUMO
Introduction: Lung cancer is the most commonly diagnosed and the main cause of cancer death, usually related to cigarette smoking. Furthermore, the microbiota of people exposed to cigarette smoke can be modified, making it difficult to eliminate opportunistic microorganisms. The leaves of Eugenia pyriformis are a by-product of fruit production and, to date, there have been no studies addressing the antiproliferative, anti-inflammatory, and antimicrobial activities. Objective: Investigate the antimicrobial, Nitric Oxide (NO)-production inhibition, and antiproliferative activities of the essential oil from E. pyriformis leaves and its possible effect on the treatment and prevention of damage caused by tobacco. Methods: The essential oil (EO) was obtained by hydrodistillation (3 h). Its chemical composition was investigated by GC-MS. It was proposed to investigate antiproliferative activity against human tumor cell lines, namely, breast adenocarcinoma (MCF-7), lung (NCI-H460), cervical (HeLa), and hepatocellular (HepG2) carcinomas. A non-tumor primary culture from pig liver (PLP2) was also tested. The EO capacity to inhibit nitric oxide (NO) production was evaluated by a lipopolysaccharide stimulated murine macrophage cell line. Antibacterial and antifungal activities against opportunistic pathogens were investigated against seven strains of bacteria and eight fungi. Results: The results indicated the presence of 23 compounds in the essential oil, the majority were spathulenol (45.63%) and ß-caryophyllene oxide (12.72%). Leaf EO provided 50% inhibition of nitric oxide production at a concentration of 92.04 µg mL-1. The EO also demonstrated antiproliferative activity against all human tumor cell lines studied, with GI50 values comprised between 270.86 and 337.25 µg mL-1. The essential oil showed antimicrobial potential against the bacteria Listeria monocytogenes (Murray et al.) Pirie (NCTC 7973) and Salmonella Typhimurium ATCC 13311 (MIC 1870 µg mL-1) and fungi Aspergillus versicolor ATCC 11730, Aspergillus ochraceus ATCC 12066, Penicillium ochrochloron ATCC 90288, Penicillium verrucosum var. cyclopium (Westling) Samson, Stolk & Hadlok (food isolate) (MIC 1870 µg mL-1) and Trichoderma viride Pers. IAM 5061 (1,400 µg mL-1). Conclusion: The demonstrated anti-inflammatory, antiproliferative, and antimicrobial activities in the leaves of E. pyriformis can add value to the production chain of this plant, being a possible option for preventing and combating cancer, including lung cancer.
RESUMO
Polyphenolic compounds are common constituents of human and animal diets and undergo extensive metabolism by the gut microbiota before entering circulation. In order to compare the transformations of polyphenols from yerba mate, rosemary, and green tea extracts in the gastrointestinal tract, simulated gastrointestinal digestion coupled with colonic fermentation were used. For enhancing the comparative character of the investigation, colonic fermentation was performed with human, pig and rat intestinal microbiota. Chemical analysis was performed using a HPLC system coupled to a diode-array detector and mass spectrometer. Gastrointestinal digestion diminished the total amount of phenolics in the rosemary and green tea extracts by 27.5 and 59.2 %, respectively. These reductions occurred mainly at the expense of the major constituents of these extracts, namely rosmarinic acid (-45.7 %) and epigalocatechin gallate (-60.6 %). The yerba mate extract was practically not affected in terms of total phenolics, but several conversions and isomerizations occurred (e.g., 30 % of trans-3-O-caffeoylquinic acid was converted into the cis form). The polyphenolics of the yerba mate extract were also the least decomposed by the microbiota of all three species, especially in the case of the human one (-10.8 %). In contrast, the human microbiota transformed the polyphenolics of the rosemary and green extracts by 95.9 and 88.2 %, respectively. The yerba mate-extract had its contents in cis 3-O-caffeoylquinic acid diminished by 78 % by the human microbiota relative to the gastrointestinal digestion, but the content of 5-O-caffeoylquinic acid (also a chlorogenic acid), was increased by 22.2 %. The latter phenomenon did not occur with the rat and pig microbiota. The pronounced interspecies differences indicate the need for considerable caution when translating the results of experiments on the effects of polyphenolics performed in rats, or even pigs, to humans.
Assuntos
Colo , Depsídeos , Digestão , Fermentação , Ilex paraguariensis , Extratos Vegetais , Polifenóis , Ácido Rosmarínico , Rosmarinus , Animais , Humanos , Extratos Vegetais/metabolismo , Rosmarinus/química , Ratos , Ilex paraguariensis/química , Suínos , Depsídeos/metabolismo , Depsídeos/análise , Polifenóis/metabolismo , Polifenóis/análise , Colo/metabolismo , Colo/microbiologia , Masculino , Cinamatos/metabolismo , Cinamatos/análise , Microbioma Gastrointestinal , Chá/química , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Ácido Quínico/análise , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/análise , Cromatografia Líquida de Alta Pressão , Camellia sinensis/químicaRESUMO
This study investigated the potential of incorporating cardoon (Cynara cardunculus L.) blades as bioactive and dietary fiber ingredients in vegetable/fruit-based smoothies, within a zero-waste approach. The smoothie formulations were pasteurized by high-pressure (550 MPa for 3 min, HPP) and thermal (90 °C for 30 s, TP) treatments and stored at 4 °C for 50 days. Cardoon-fortified smoothies exhibited higher viscosity, darker color, increased phenolic compound levels, and greater anti-inflammatory and antioxidant activities. Furthermore, the cardoon blade ingredients contributed to a more stable dietary fiber content throughout the smoothies' shelf-life. HPP-processed smoothies did not contain sucrose, suggesting enzymatic activity that resulted in sucrose hydrolysis. All beverage formulations had low or no microbial growth within European limits. In conclusion, the fortification of smoothies with cardoon blades enhanced bioactive properties and quality attributes during their shelf-life, highlighting the potential of this plant material as a potential functional food ingredient in a circular economy context.
Assuntos
Cynara , Pasteurização , Cynara/química , Temperatura Alta , Antioxidantes/química , Alimento Funcional/análise , Manipulação de Alimentos/instrumentação , Frutas/química , Temperatura Baixa , Armazenamento de Alimentos , Bebidas/análiseRESUMO
The Plectranthus genus (Lamiaceae) is known to be rich in abietane diterpenes. The bioactive 6,7-dehydroxyroyleanone (DHR, 1) was previously isolated from Plectranthus madagascariensis var. madagascariensis and var. aliciae. This study aimed to explore the occurrence of DHR, 1, in P. aliciae and the potential bioactivities of new semisynthetic derivatives from DHR, 1. Several extraction methods were evaluated, and the hydrodistillation, using a Clevenger apparatus, afforded the highest yield (77.8 mg/g of 1 in the essential oil). Three new acyl derivatives (2-4) were successfully prepared from 1 (yields of 86-95%). Compounds 1-4 showed antioxidant activity, antibacterial effects, potent cytotoxic activity against several cell lines, and enhanced anti-inflammatory activity that surpassed dexamethasone (positive control). These findings encourage further exploration of derivatives 2-4 for potential mechanisms of antitumoral, antioxidant, and anti-inflammatory capabilities, studying both safety and efficacy.
RESUMO
The chemical composition of Pachira aquatica crude extracts flowers, leaves, and seeds was obtained by UHPLC-ESI/qTOF and GC/MS. The antiproliferative activity was evaluated against the human tumour cell lines AGS (gastric), CaCo-2 (colorectal), MCF-7 (breast), and NCI-H460 (lung). The anti-inflammatory and cellular antioxidant activities were also studied. Flavonoids, phenolic acids, coumarins, and saturated fatty acids were identified in the samples. The concentration of extracts responsible for inhibiting 50% of nitric oxide production ranged from (149 to > 400 µg mL-1). Antiproliferative activity against the tumour cell lines was: AGS (GI50 175 to > 400 µg mL-1), Caco-2 (GI50 215 to > 400 µg mL-1), MCF7 (GI50 232 to > 400 µg mL-1) and NCI-H460 (GI50 208 to > 400 µg mL-1). Cellular antioxidant activity remained between 73% to > 2000%. The selectivity index (SI) ranged from 1.00 to 2.78, indicating low antiproliferative activity.
RESUMO
The chemical composition of extracts (CEs) and essential oils (EOs) from Tetradenia riparia leaves, flower buds, and stems was analyzed. Antiproliferative activity against tumor cell lines, NO production inhibition, and antioxidant and antiviral activities were assessed. The CEs contained flavonoids, phenolic acids, coumarins, and saturated fatty acids. The EOs included monoterpenes, oxygenated sesquiterpenes, and diterpenes. NO production inhibition ranged from 76 to 247 µg mL-1, and antiproliferative activity exhibited GI50 between 20 and >204 µg mL-1, with low cytotoxicity (SI: 1.08 to 4.75). Reactive oxygen species inhibition ranged from 45 to 82%. Antioxidant activity varied when determined by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (IC50: 0.51 to 8.47 mg mL-1) and ferric reducing antioxidant power (0.35 to 0.81 µM ferrous sulfate per mg). The reduction in ß-carotene-linoleic acid co-oxidation varied between 76.13 and 102.25%. The total phenolic content of CEs and EOs was 10.70 to 111.68 µg gallic acid mg-1. Antiviral activity against herpes simplex virus type 1 (HSV-1) showed an EC50 between 9.64 and 24.55 µg mL-1 and an SI between 8.67 and 15.04. Leaf EOs exhibited an EC50 of 9.64 µg mL-1 and an SI of 15.04. Our study unveils the diverse chemical composition and multifaceted pharmacological properties of T. riparia, demonstrating its potential as a valuable source of bioactive compounds for therapeutic applications.
RESUMO
Cynara cardunculus L. var. altilis DC. belongs to the Asteraceae family and is widely used. This species is integrated into the Mediterranean diet and has broad applicability due to its rich chemical composition. Its flowers, used as a vegetable coagulant for gourmet cheese production, are rich in aspartic proteases. Leaves are rich in sesquiterpene lactones, the most abundant being cynaropicrin, while stems present a higher abundance of hydroxycinnamic acids. Both classes of compounds exhibit a wide range of bioactive properties. Its chemical composition makes it applicable in other industrial sectors, such as energy (e.g., manufacturing of biodiesel and biofuel) or paper pulp production, among other biotechnological applications. In the last decade, cardoon has been identified as a competitive energy crop, constituting an opportunity for the economic recovery and development of the rural areas of the Mediterranean basin. This article reviews the chemical composition, bioactive properties, and multifaceted industrial applications of cardoon.
Assuntos
Ácido Aspártico Proteases , Cynara , Cynara/química , Ácido Aspártico Endopeptidases , Folhas de Planta , FloresRESUMO
Medicinal plants have historically been a source of drugs in multiple applications, including the treatment of malaria infections. The Cabo Verde archipelago harbors a rich diversity of native plants, most of which are used for medicinal purposes. The present study investigated the in vitro antiplasmodial activities of four native plants from Cabo Verde (i.e., Artemisia gorgonum, Lavandula rotundifolia, Sideroxylon marginatum, and Tamarix senegalensis). Traditional preparations of these medicinal plants, namely aqueous extracts (infusions) and ethanolic extracts, were tested against both chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains using the SYBR Green detection method. The in vitro cytotoxicity was evaluated in Caco-2 and PLP2 cells using a sulforhodamine B colorimetric assay. An ethanolic extract of A. gorgonum and infusions of T. senegalensis exhibited high antiplasmodial activities (EC50 < 5 µg/mL) without cytotoxicity (GI50 > 400 µg/mL). Extracts of L. rotundifolia and S. marginatum exhibited moderate activities, with EC50 values ranging from 10-30 µg/mL. The A. gorgonum ethanolic extract showed activity toward early ring stages, and parasites treated with the T. senegalensis infusions progressed to the early trophozoite stage, although did not develop further to the late trophozoite or schizont stages. Antimalarial activities and the lack of cytotoxicity of the extracts are reported in the present study and support previous claims by traditional practitioners for the use of these plants against malaria while suggesting their ethnopharmacological usefulness as future antimalarials.
RESUMO
Due to a lack of innovative valorization strategies, pomegranate processing generates a significant amount of residues with a negative environmental footprint. These by-products are a rich source of bioactive compounds with functional and medicinal benefits. This study reports the valorization of pomegranate leaves as a source of bioactive ingredients using maceration, ultrasound, and microwave-assisted extraction techniques. The phenolic composition of the leaf extracts was analyzed using an HPLC-DAD-ESI/MSn system. The extracts' antioxidant, antimicrobial, cytotoxic, anti-inflammatory, and skin-beneficial properties were determined using validated in vitro methodologies. The results showed that gallic acid, (-)-epicatechin, and granatin B were the most abundant compounds in the three hydroethanolic extracts (between 0.95 and 1.45, 0.7 and 2.4, and 0.133 and 3.0 mg/g, respectively). The leaf extracts revealed broad-spectrum antimicrobial effects against clinical and food pathogens. They also presented antioxidant potential and cytotoxic effects against all tested cancer cell lines. In addition, tyrosinase activity was also verified. The tested concentrations (50-400 µg/mL) ensured a cellular viability higher than 70% in both keratinocyte and fibroblast skin cell lines. The obtained results indicate that the pomegranate leaves could be used as a low-cost source of value-added functional ingredients for potential nutraceutical and cosmeceutical applications.
RESUMO
A variety of the classic green tea plant, Camellia sinensis, was developed and is exclusive to Kenya. Due to high content of anthocyanin polyphenols in its leaves, the beverage obtained from this variety is purple in color and is the origin of the name purple tea. This work had two main purposes. The first one was to identify and quantify the major anthocyanin polyphenols in a hot water aqueous extract of the purple tea leaves. The second one was to test the hypothesis if this extract is capable of inhibiting triglyceride absorption considering that anthocyanin polyphenolics have been frequently associated to antilipidemic effects. Parallel experiments were always done with a similar green tea extract for comparison purposes. The antioxidant, anti-inflammatory, and cytotoxic activities of both tea varieties are similar. The purple tea extract, however, was strongly inhibitory toward the pancreatic lipase (minimal IC50 = 67.4 µg mL-1), whereas the green tea preparation was a weak inhibitor. Triglyceride digestion in mice was inhibited by the purple tea extract starting at 100 mg kg-1 dose and with a well-defined dose dependence. Green tea had no effect on triglyceride digestion at doses up to 500 mg kg-1. The latter effect is probably caused by several components in the purple tea extract including non-anthocyanin and anthocyanin polyphenols, the first ones acting solely via the inhibition of the pancreatic lipase and the latter by inhibiting both the lipase and the transport of free fatty acids from the intestinal lumen into the circulating blood. The results suggest that the regular consumption of Kenyan purple tea can be useful in the control of obesity.
Assuntos
Camellia sinensis , Lipase , Camundongos , Animais , Quênia , Polifenóis/farmacologia , Polifenóis/análise , Chá/química , Camellia sinensis/química , Antocianinas/farmacologia , Antocianinas/química , Antioxidantes/análise , Triglicerídeos , DigestãoRESUMO
In recent years, the interest in products of natural origin has boosted the exploitation and use of plants as food and sources of bioactive compounds, especially wild plants widely used in different cultures for several purposes. Commelina erecta is a wild edible plant (WEP) traditionally used as food and medicine, about which few studies exist. Thus, this study aimed at enhancing the knowledge about its nutritional, chemical and bioactive profile, considering different plant parts and development stages, in order to increase its inclusion in the diet of South American communities. The nutritional profile was found to be similar to other WEP frequently consumed in Brazil. Thirteen phenolic compounds (HPLC-DAD-ESI/MS) were tentatively identified, with apigenin, luteolin and quercetin derivatives being the most abundant. Fructose and oxalic acid were the major sugar and organic acid, respectively, in the aerial parts of C. erecta, and four isoforms of tocopherols were also identified. Regarding the plant's antioxidant activity, the EC50 values varied between 18.4 and 1060 µg/mL in the inhibition of lipid peroxidation assay (TBARS) and between 53 and 115 µg/mL in the oxidative haemolysis inhibition (OxHLIA) assay. The hydroethanolic extract obtained from stems at the flowering stage also presented anti-inflammatory activity. In general, all the extracts evidenced promising antimicrobial activity. Altogether, these results reinforce the traditional use of this plant species as food and medicine to support the diet of needier populations and also promote food sovereignty and sustainability.
RESUMO
Grumixama, Eugenia brasiliensis Lam., is a Brazilian berry little explored commercially and scientifically. However, local small producers market this fruit in the form of frozen pulp, which generates bioresidues, composed of seeds and peels. With the view to propose strategies for valuing grumixama, this study aimed to determine the chemical composition and assess the bioactivities of the hydroethanolic extracts of the whole residue (GR), seed (GS) and peel (GP) fractions of E. brasiliensis. From the results, GP had the highest concentration of organic acids (oxalic, malic, ascorbic and citric acids), total tocopherols, condensed tannins, anthocyanins, and other flavonoids. On the other hand, GS showed the highest content of monounsaturated fatty acids and hydrolysable tannins, whereas GR displayed a mixture of compounds detected in each of its parts. Regarding the bioactivities, low extract concentrations were required in two in vitro antioxidant assays, namely TBARS (EC50 = 0.90-1.34 µg mL-1) and OxHLIA (IC50 = 21-65 µg mL-1). Furthermore, GP had the highest inhibition activity of cellular oxidation in the CAA assay (80 ± 0.6%), while GS showed the highest anti-inflammatory activity via nitric oxide production inhibition (EC50 = 98.0 ± 0.5 µg mL-1). All samples induced cell growth inhibition of the tested tumor cells (GI50 = 14.7-186 µg mL-1) besides antibacterial and antifungal effects at low concentrations, but all samples were harmful to normal cells at moderate concentrations (GI50 = 145-268 µg mL-1). Therefore, E. brasiliensis residue could be a good source of bioactive compounds to be used in several areas. However, additional studies are needed to confirm its safety as well as to unravel the mechanisms behind its biological activities.
Assuntos
Eugenia , Frutas , Frutas/química , Antocianinas/análise , Extratos Vegetais/química , Eugenia/química , Brasil , Antioxidantes/químicaRESUMO
Consumer demand for natural and healthier products has led to an increasing interest in the bioactive and therapeutic properties of plant extracts. In this study, we evaluated the phenolic compounds profile, bioactivities, and toxicities of plant extracts from eight European flora species, including Calendula officinalis L., Calluna vulgaris (L.) Hull, Hippophae rhamnoides L., Juglans regia L., Mentha cervina L., Rubus idaeus L., Sambucus nigra L., and Vitis vinifera L. The aim was to identify potential preservatives of natural origin. Phenolic compounds were identified by HPLC-DAD-ESI-MS. Caffeic acid derivatives, ellagitannins, flavonols, and flavones were the major phenolic compounds identified. The total phenolic content varied from 16.0 ± 0.2 (V. vinifera) to 123 ± 2 mg/g (H. rhamnoides) of dry extract. All extracts showed antioxidant potential and exhibited activity against some of the microorganisms tested. S. nigra showed the highest activity in the inhibition of oxidative hemolysis (OxHLIA) assay and H. rhamnoides, notably, had the lowest IC50 values in TBARS and DPPH assays, as well as the lowest minimum inhibitory concentration (MIC) values. Regarding in vitro cytotoxicity, in tumor and non-tumor cell lines, although some extracts revealed toxicity against normal cells, it was found that the samples C. vulgaris, V. vinifera and R. idaeus might be used against tumor cells since the active concentration is much lower than the one causing toxicity. In vivo acute toxicity tests using Artemia franciscana suggest low toxicity for most extracts, with LC50 > 400 mg/L. These results showed the potential of the studied extracts as natural preservatives, given their richness in compounds with bioactive properties, highlight their potential value to the production chain.