Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(1): 144-151, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29257691

RESUMO

Semiconductors are essential for modern electronic and optoelectronic devices. To further advance the functionality of such devices, the ability to fabricate increasingly complex semiconductor nanostructures is of utmost importance. Nanowires offer excellent opportunities for new device concepts; heterostructures have been grown in either the radial or axial direction of the core nanowire but never along both directions at the same time. This is a consequence of the common use of a foreign metal seed particle with fixed size for nanowire heterostructure growth. In this work, we present for the first time a growth method to control heterostructure growth in both the axial and the radial directions simultaneously while maintaining an untapered self-seeded growth. This is demonstrated for the InAs/InAs1-xPx material system. We show how the dimensions and composition of such axio-radial nanowire heterostructures can be designed including the formation of a "pseudo-superlattice" consisting of five separate InAs1-xPx segments with varying length. The growth of axio-radial nanowire heterostructures offers an exciting platform for novel nanowire structures applicable for fundamental studies as well as nanowire devices. The growth concept for axio-radial nanowire heterostructures is expected to be fully compatible with Si substrates.

2.
J Synchrotron Radiat ; 22(1): 59-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25537589

RESUMO

The spatial strain distribution in and around a single axial InAs 1-x Px hetero-segment in an InAs nanowire was analyzed using nano-focused X-ray diffraction. In connection with finite-element-method simulations a detailed quantitative picture of the nanowire's inhomogeneous strain state was achieved. This allows for a detailed understanding of how the variation of the nanowire's and hetero-segment's dimensions affect the strain in its core region and in the region close to the nanowire's side facets. Moreover, ensemble-averaging high-resolution diffraction experiments were used to determine statistical information on the distribution of wurtzite and zinc-blende crystal polytypes in the nanowires.

3.
Nano Lett ; 11(4): 1483-9, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21434674

RESUMO

The atomic distances in hexagonal polytypes of III-V compound semiconductors differ from the values expected from simply a change of the stacking sequence of (111) lattice planes. While these changes were difficult to quantify so far, we accurately determine the lattice parameters of zinc blende, wurtzite, and 4H polytypes for InAs and InSb nanowires, using X-ray diffraction and transmission electron microscopy. The results are compared to density functional theory calculations. Experiment and theory show that the occurrence of hexagonal bilayers tends to stretch the distances of atomic layers parallel to the c axis and to reduce the in-plane distances compared to those in zinc blende. The change of the lattice parameters scales linearly with the hexagonality of the polytype, defined as the fraction of bilayers with hexagonal character within one unit cell.


Assuntos
Antimônio/química , Arsenicais/química , Índio/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Tamanho da Partícula
4.
Nano Lett ; 11(7): 2875-80, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21627099

RESUMO

For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.


Assuntos
Germânio/química , Nanotecnologia , Pontos Quânticos , Silício/química , Transistores Eletrônicos , Tamanho da Partícula , Semicondutores , Propriedades de Superfície , Raios X
5.
Nanotechnology ; 22(26): 265606, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21576775

RESUMO

Crystal phase control in single III-V semiconductor nanowires has emerged recently as an important challenge and possible complement to conventional bandgap engineering in single material systems. Here we investigate a supply interruption method for precise crystal phase control in single nanowires. The nanowires are grown by metalorganic vapor phase epitaxy using gold particles as seeds and are analyzed by transmission electron microscopy. It is observed that wurtzite segments with controlled length and position can be inserted on demand into a pure InAs zincblende nanowire. The interface between wurtzite and zincblende segments can be made atomically sharp and the segments can be made only a few bilayers in thickness. The growth mechanisms, applicability and limitations of the technique are presented and discussed.

6.
Nanotechnology ; 22(14): 145603, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21346304

RESUMO

In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20 at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio at the particle-wire interface. The low ionicity of InSb and the large diameter of the wire structures studied in this work are entirely outside the parameters for which polytype formation is predicted by current models of particle seeded wire growth, suggesting that the V/III ratio at the interface determines crystal structure in a manner well beyond current understanding. These results therefore provide important insight into the relationship between the particle composition and the crystal structure, and demonstrate the potential to selectively tune the crystal structure in other III-V compound materials as well.

7.
J Cryst Growth ; 334(1): 51-56, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22053114

RESUMO

In this work, the nucleation and growth of InAs nanowires on patterned SiO(2)/Si(111) substrates is studied. It is found that the nanowire yield is strongly dependent on the size of the etched holes in the SiO(2), where openings smaller than 180 nm lead to a substantial decrease in nucleation yield, while openings larger than ≈500nm promote nucleation of crystallites rather than nanowires. We propose that this is a result of indium particle formation prior to nanowire growth, where the size of the indium particles, under constant growth parameters, is strongly influenced by the size of the openings in the SiO(2) film. Nanowires overgrowing the etched holes, eventually leading to a merging of neighboring nanowires, shed light into the growth mechanism.

8.
Nano Lett ; 10(11): 4443-9, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20939507

RESUMO

Group III-V nanowires offer the exciting possibility of epitaxial growth on a wide variety of substrates, most importantly silicon. To ensure compatibility with Si technology, catalyst-free growth schemes are of particular relevance, to avoid impurities from the catalysts. While this type of growth is well-documented and some aspects are described, no detailed understanding of the nucleation and the growth mechanism has been developed. By combining a series of growth experiments using metal-organic vapor phase epitaxy, as well as detailed in situ surface imaging and spectroscopy, we gain deeper insight into nucleation and growth of self-seeded III-V nanowires. By this mechanism most work available in literature concerning this field can be described.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
Nano Lett ; 10(10): 3893-8, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20795707

RESUMO

We show that the principally two-dimensional (2D) scanning tunneling microscope (STM) can be used for imaging of 1D micrometer high free-standing nanowires. We can then determine nanowire megahertz resonance frequencies, image their top-view 2D resonance shapes, and investigate axial stress on the nanoscale. Importantly, we demonstrate the extreme sensitivity of electron tunneling even at very high frequencies by measuring resonances at hundreds of megahertz with a precision far below the angstrom scale.

10.
Nano Lett ; 9(5): 1877-82, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19320494

RESUMO

The fabrication of core-shell structures is crucial for many nanowire device concepts. For the proper tailoring of their electronic properties, control of structural parameters such as shape, size, diameter of core and shell, their chemical composition, and information on their strain fields is mandatory. Using synchrotron X-ray diffraction studies and finite element simulations, we determined the chemical composition, dimensions, and strain distribution for series of InAs/InAsP core-shell wires grown on Si(111) with systematically varied growth parameters. In particular we detect initiation of plastic relaxation of these structures with increasing shell thickness and/or increasing phosphorus content. We establish a phase diagram, defining the region of parameters leading to pseudomorphic nanowire growth. This is important to avoid extended defects which are detrimental for their electronic properties.

11.
Nanoscale ; 7(22): 9998-10004, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25981415

RESUMO

Using scanning tunneling microscopy, we evaluate the surface structure and morphology down to the atomic scale for micrometers along Au-free grown InAs nanowires (NWs) free from native oxide. We find that removal of the native oxide (which covers the NWs upon exposure to the ambient air) using atomic hydrogen does not alter the underlying step structure. Imaging with sub-nanometer resolution along the NWs, we find an extremely low tapering (diameter change along the NW) of 1.7 ± 0.5 ŵm(-1). A surface morphology with monolayer high islands, whose shape was influenced by stacking faults, was found to cover the NWs and was attributed to the decomposed native oxide. The appearance of point defects in the form of As-vacancies at the surface is analyzed and we set limits to the amount of carbon impurities in the NWs.

12.
Nano Lett ; 6(8): 1817-21, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16895379

RESUMO

III-V nanowires have been fabricated by metal-organic vapor-phase epitaxy without using Au or other metal particles as a catalyst. Instead, prior to growth, a thin SiOx layer is deposited on the substrates. Wires form on various III-V substrates as well as on Si. They are nontapered in thickness and exhibit a hexagonal cross-section. From high-resolution X-ray diffraction, the epitaxial relation between wires and substrates is demonstrated and their crystal structure is determined.


Assuntos
Arsenicais/análise , Arsenicais/química , Cristalização/métodos , Índio/análise , Índio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Instalação Elétrica/instrumentação , Ouro/química , Teste de Materiais , Conformação Molecular , Nanoestruturas/análise , Tamanho da Partícula
13.
Nano Lett ; 5(4): 761-4, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15826124

RESUMO

We report the temperature dependence of the Au-assisted growth of InAs nanowires in MOVPE. Extensive studies of the growth of such nanowires have attributed growth to the so-called vapor-liquid-solid (VLS) mechanism, with a liquid Au-In alloy particle. We assert here that growth is instead assisted by a solid particle and does not occur at all when the particle is a liquid. Thus the temperature range of InAs nanowire growth is limited by the melting of the Au-In alloy. Comparison with growth of InAs nanowires in the same system assisted by a layer of SiO(x) is used to support this conclusion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa