Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Biol ; 19(4): e3001166, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826607

RESUMO

Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.


Assuntos
Vesículas Extracelulares/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/ultraestrutura
3.
Nat Commun ; 12(1): 635, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504809

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with the majority of cases characterised by relapsing/remitting (RRMS) attacks of neurologic dysfunction followed by variable resolution. Improving clinical outcomes in RRMS requires both a better understanding of the immunological mechanisms driving recurrent demyelination and better means of predicting future disease course to facilitate early targeted therapy. Here, we apply hypothesis-generating network transcriptomics to CD8+ cells isolated from patients in RRMS, identifying a signature reflecting expansion of a subset of CD8+ natural killer cells (NK8+) associated with favourable outcome. NK8+ are capable of regulating CD4+ T cell activation and proliferation in vitro, with reduced expression of HLA-G binding inhibitory receptors and consequent reduced sensitivity to HLA-G-mediated suppression. We identify surrogate markers of the NK8+ signature in peripheral blood leucocytes and validate their association with clinical outcome in an independent cohort, suggesting their measurement may facilitate early, targeted therapy in RRMS.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Matadoras Naturais/imunologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Transcriptoma/genética , Linfócitos T CD8-Positivos/ultraestrutura , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Antígenos HLA-G/metabolismo , Humanos , Células Matadoras Naturais/ultraestrutura , Ativação Linfocitária/genética , Reprodutibilidade dos Testes , Fatores de Risco , Resultado do Tratamento
4.
Clin Lung Cancer ; 22(5): 423-431, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33849808

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are a promising source of biological information in cancer. Data correlating PD-L1 expression in CTCs with patients' response to immune checkpoint inhibitors (ICIs) in non-small-cell lung cancer (NSCLC) are still lacking. METHODS: This is a prospective single-center cohort study enrolling patients with advanced NSCLC. CTCs were identified and counted with the CellSearch system. PD-L1 expression on CTCs was assessed with phycoerythrin-conjugated anti-human PD-L1 antibody, clone MIH3 (BioLegend, USA). Primary endpoint was the correlation between the CTCs PD-L1 expression and overall survival (OS). Among secondary objectives, we evaluated the correlation between PD-L1 expression on CTCs and matched tumor tissue and the correlation of CTC number and baseline tumor size (BTS). RESULTS: Thirty-nine patients treated with anti-PD-1/PD-L1 agents as second- or third-line therapy were enrolled. Patients were divided into 3 groups: no CTC detectable (CTCnull, n = 15), PD-L1 positive CTC (CTCpos, n = 13), and PD-L1 negative CTC (CTCneg, n = 11). Median OS in patients with CTCneg was 2.2 months, 95% confidence interval (CI), 0.8-3.6 (reference) versus 3.7 months, 95% CI, 0.1-7.5 (hazard ratio [HR] 0.33; 95% CI, 0.13-0.83; P = .019) in patients with CTCpos versus 16.0 months, 95% CI, 2.2-29.8 (HR 0.17; 95% CI, 0.06-0.45; P< .001) in patients with CTCnull. No correlation was found between PD-L1 expression on CTCs and on tumor tissue. CTC number was correlated with BTS. CONCLUSION: PD-L1 expression on CTCs is a promising biomarker in patients with NSCLC treated with ICIs. Further validation as predictive biomarker is needed.


Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
5.
Exp Biol Med (Maywood) ; 243(1): 22-28, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29199847

RESUMO

Wnt3a is implicated in several key cellular processes and its expression has been reported in different cell types. Here, we report a novel function for Wnt3a in macrophages, whose exposure to this ligand shifts them towards a pro-angiogenic phenotype capable, under oxygen and glucose deprivation, of inducing in vitro tubular pattern structures in endothelial cells resembling capillary-like vasculature. These newly acquired angiogenetic features also include increased proliferation and migration and surprisingly, an increase in cell death. This work provides a new link between Wnt3a and macrophage-mediated angiogenesis under glucose and oxygen deprivation in vitro, which are worth further investigation in pathological conditions including stroke, where the stimulation of the angiogenic process might help to recovery after tissue injury Impact statement This work provides a new link between Wnt3a and macrophage-mediated angiogenesis under glucose and oxygen deprivation in vitro. Our results reveal how Wnt3a shifts macrophages towards a pro-angiogenic phenotype, which is able-in absence of both glucose and oxygen-of inducing angiogenesis in vitro, thus pointing to a synergy between the activation of the pathway and the hypoxia scenario. This work also demonstrates that modulation of cell death is key in order to explain the observed angiogenic effects. We consider all these findings of significant importance, since no connection between Wnt3a, macrophages, and angiogenesis has been established so far. Furthermore, we do believe that this work provides new and interesting results, with Wnt signaling pathway emerging as an interesting target mediating beneficial outcomes during the inflammatory response undoubtedly linked to stroke pathology, where angiogenesis has been already proposed as a potential mechanism to promote recovery after the injury.


Assuntos
Macrófagos/fisiologia , Neovascularização Fisiológica , Acidente Vascular Cerebral/patologia , Proteína Wnt3A/metabolismo , Animais , Movimento Celular , Proliferação de Células , Glucose/metabolismo , Hipóxia , Camundongos , Oxigênio/metabolismo
6.
Cell Stem Cell ; 22(3): 355-368.e13, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29478844

RESUMO

Neural stem cell (NSC) transplantation can influence immune responses and suppress inflammation in the CNS. Metabolites, such as succinate, modulate the phenotype and function of immune cells, but whether and how NSCs are also activated by such immunometabolites to control immunoreactivity and inflammatory responses is unclear. Here, we show that transplanted somatic and directly induced NSCs ameliorate chronic CNS inflammation by reducing succinate levels in the cerebrospinal fluid, thereby decreasing mononuclear phagocyte (MP) infiltration and secondary CNS damage. Inflammatory MPs release succinate, which activates succinate receptor 1 (SUCNR1)/GPR91 on NSCs, leading them to secrete prostaglandin E2 and scavenge extracellular succinate with consequential anti-inflammatory effects. Thus, our work reveals an unexpected role for the succinate-SUCNR1 axis in somatic and directly induced NSCs, which controls the response of stem cells to inflammatory metabolic signals released by type 1 MPs in the chronically inflamed brain.


Assuntos
Sistema Nervoso Central/patologia , Inflamação/patologia , Macrófagos/metabolismo , Células-Tronco Neurais/citologia , Ácido Succínico/metabolismo , Animais , Linhagem Celular , Doença Crônica , Dinoprostona/metabolismo , Feminino , Humanos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/transplante , Fosforilação Oxidativa , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa