Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Arch Pharm (Weinheim) ; : e2400296, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923553

RESUMO

Nontuberculous mycobacteria (NTM), which include the Mycobacterium avium complex, are classified as difficult-to-treat pathogens due to their ability to quickly develop drug resistance against the most common antibiotics used to treat NTM infections. The overexpression of efflux pumps (EPs) was demonstrated to be a key mechanism of clarithromycin (CLA) resistance in NTM. Therefore, in this work, 24 compounds from an in-house library, characterized by chemical diversity, were tested as potential NTM EP inhibitors (EPIs) against Mycobacterium smegmatis mc2 155 and M. avium clinical isolates. Based on the acquired results, 12 novel analogs of the best derivatives 1b and 7b were designed and synthesized to improve the NTM EP inhibition activity. Among the second set of compounds, 13b emerged as the most potent NTM EPI. At a concentration of 4 µg/mL, it reduced the CLA minimum inhibitory concentration by 16-fold against the clinical isolate M. avium 2373 overexpressing EPs as primary mechanism of CLA resistance.

2.
J Enzyme Inhib Med Chem ; 35(1): 584-597, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31992093

RESUMO

NorA is the most studied efflux pump of Staphylococcus aureus and is responsible for high level resistance towards fluoroquinolone drugs. Although along the years many NorA efflux pump inhibitors (EPIs) have been reported, poor information is available about structure-activity relationship (SAR) around their nuclei and reliability of data supported by robust assays proving NorA inhibition. In this regard, we focussed efforts on the 2-phenylquinoline as a promising chemotype to develop potent NorA EPIs. Herein, we report SAR studies about the introduction of different aryl moieties on the quinoline C-2 position. The new derivative 37a showed an improved EPI activity (16-fold) with respect to the starting hit 1. Moreover, compound 37a exhibited a high potential in time-kill curves when combined with ciprofloxacin against SA-1199B (norA+). Also, 37a exhibited poor non-specific effect on bacterial membrane polarisation and showed an improvement in terms of "selectivity index" in comparison to 1.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Quinolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Quinolinas/síntese química , Quinolinas/química , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987835

RESUMO

Tackling antimicrobial resistance (AMR) represents a social responsibility aimed at renewing the antimicrobial armamentarium and identifying novel therapeutical approaches. Among the possible strategies, efflux pumps inhibition offers the advantage to contrast the resistance against all drugs which can be extruded. Efflux pump inhibitors (EPIs) are molecules devoid of any antimicrobial activity, but synergizing with pumps-substrate antibiotics. Herein, we performed an in silico scaffold hopping approach starting from quinolin-4-yloxy-based Staphylococcus aureus NorA EPIs by using previously built pharmacophore models for NorA inhibition activity. Four scaffolds were identified, synthesized, and modified with appropriate substituents to obtain new compounds, that were evaluated for their ability to inhibit NorA and synergize with the fluoroquinolone ciprofloxacin against resistant S. aureus strains. The two quinoline-4-carboxamide derivatives 3a and 3b showed the best results being synergic (4-fold MIC reduction) with ciprofloxacin at concentrations as low as 3.13 and 1.56 µg/mL, respectively, which were nontoxic for human THP-1 and A549 cells. The NorA inhibition was confirmed by SA-1199B ethidium bromide efflux and checkerboard assays against the isogenic pair SA-K2378 (norA++)/SA-K1902 (norA-). These in vitro results indicate the two compounds as valuable structures for designing novel S. aureus NorA inhibitors to be used in association with fluoroquinolones.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Quinolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Células A549 , Antibacterianos/síntese química , Humanos , Quinolinas/síntese química , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Células THP-1
4.
Molecules ; 25(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151066

RESUMO

Despite great efforts have been made in the prevention and therapy of human immunodeficiency virus (HIV-1) infection, however the difficulty to eradicate latent viral reservoirs together with the emergence of multi-drug-resistant strains require the search for innovative agents, possibly exploiting novel mechanisms of action. In this context, the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H), which is one of the few HIV-1 encoded enzymatic function still not targeted by any current drug, can be considered as an appealing target. In this work, we repurposed in-house anti-influenza derivatives based on the 1,2,4-triazolo[1,5-a]-pyrimidine (TZP) scaffold for their ability to inhibit HIV-1 RNase H function. Based on the results, a successive multi-step structural exploration around the TZP core was performed leading to identify catechol derivatives that inhibited RNase H in the low micromolar range without showing RT-associated polymerase inhibitory activity. The antiviral evaluation of the compounds in the MT4 cells showed any activity against HIV-1 (IIIB strain). Molecular modelling and mutagenesis analysis suggested key interactions with an unexplored allosteric site providing insights for the future optimization of this class of RNase H inhibitors.


Assuntos
Pirimidinas/química , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Sítios de Ligação , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/química , Relação Estrutura-Atividade
5.
Biochem Biophys Res Commun ; 511(3): 579-586, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30824186

RESUMO

p38α mitogen-activated protein kinase (MAPK) is an attracting pharmacological target in inflammatory diseases and cancer. Searching for new and more efficient p38-MAPK inhibitors, two recently developed pyrazolobenzothiazine-based (COXP4M12 and COXH11) compounds were investigated in this study using a cellular model of p38 activation. This consisted of HT29 human colorectal adenocarcinoma cells exposed to H2O2 or lipopolysaccharide (LPS). Immunoblot data confirmed the inhibitory effect of COXP4M12 and COXH11 on p38 substrate phosphorylation (MAPK-APK2 and ATF2 transcription factor). Compound cytotoxicity was very low and apparent efficacy of these inhibitors was comparable with that of SB203580, a commercially available type I inhibitor of p38. All these compounds also inhibit upstream kinases that promote p38-MAPK phosphorylation and co-activate the stress-activated protein kinase JNK, while ERK1/2 MAPK phosphorylation was unaffected. Compound-target kinase interaction was investigated by means of co-crystallization experiments that provided further structural and molecular insight on the inhibitory mechanism and optimization strategy of this new class of p38-MAPK inhibitors.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Tiazinas/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Proteína Quinase 14 Ativada por Mitógeno/química , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Pirazóis/química , Pirazóis/farmacologia , Tiazinas/química
6.
J Enzyme Inhib Med Chem ; 34(1): 55-74, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30362381

RESUMO

The paper focussed on a step-by-step structural modification of a cycloheptathiophene-3-carboxamide derivative recently identified by us as reverse transcriptase (RT)-associated ribonuclease H (RNase H) inhibitor. In particular, its conversion to a 2-aryl-cycloheptathienoozaxinone derivative and the successive thorough exploration of both 2-aromatic and cycloheptathieno moieties led to identify oxazinone-based compounds as new anti-RNase H chemotypes. The presence of the catechol moiety at the C-2 position of the scaffold emerged as critical to achieve potent anti-RNase H activity, which also encompassed anti-RNA dependent DNA polymerase (RDDP) activity for the tricyclic derivatives. Benzothienooxazinone derivative 22 resulted the most potent dual inhibitor exhibiting IC50s of 0.53 and 2.90 µM against the RNase H and RDDP functions. Mutagenesis and docking studies suggested that compound 22 binds two allosteric pockets within the RT, one located between the RNase H active site and the primer grip region and the other close to the DNA polymerase catalytic centre.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV/efeitos dos fármacos , Oxazinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Tiofenos/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Relação Dose-Resposta a Droga , HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxazinas/síntese química , Oxazinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Ribonuclease H do Vírus da Imunodeficiência Humana/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
7.
J Chem Inf Model ; 54(2): 481-97, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-23952658

RESUMO

The introduction of new anti-HCV drugs in therapy is an imperative need and is necessary with a view to develop an interferon-free therapy. Thus, the discovery and development of novel small molecule inhibitors of the viral NS5B polymerase represent an exciting area of research for many pharmaceutical companies and academic groups. This study represents a contribution to this field and relies on the identification of the best NS5B model(s) to be used in structure-based computational approaches aimed at identifying novel non-nucleoside inhibitors of one of the protein allosteric sites, namely, palm site I. First, the NS5B inhibitors at palm site I were classified as water-mediated or nonwater-mediated ligands depending on their ability to interact with or displace a specific water molecule. Then, we took advantage of the available X-ray structures of the NS5B/ligand complexes to build different models of protein/water combinations, which were used to investigate the influence on docking studies of solvent sites as well as of the influence of the protein conformations. As the overall trend, we observed improved performance in the docking results of the water-mediated inhibitors by inclusion of explicit water molecules, with an opposite behavior generally happening for the nonwater-mediated inhibitors. The best performing target structures for the two ligand sets were then used for virtual screening simulations of a library containing the known NS5B inhibitors along with related decoys to assess the best performing targets ensembles on the basis of their ability to discriminate active and inactive compounds as well as to generate the correct binding modes. The parallel use of different protein structures/water sets outperformed the use of a single target structure, with the two-protein 3H98/2W-2FVC/7W and 3HKY/NoW-3SKE/NoW models resulting in the best performing ensembles for water-mediated inhibitors and nonwater-mediated inhibitors, respectively. The information gathered from this work confirms the primary role of water molecules and protein flexibility in docking-based studies and can be exploited to aid NS5B-directed HCV drug discovery efforts.


Assuntos
Antivirais/metabolismo , Antivirais/farmacologia , Hepacivirus , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Água/química , Sítio Alostérico , Conformação Proteica , Proteínas não Estruturais Virais/química
8.
Bioorg Med Chem ; 22(17): 4658-66, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25127466

RESUMO

It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV/efeitos dos fármacos , Quinolonas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Relação Dose-Resposta a Droga , HIV/genética , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
9.
J Med Chem ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970494

RESUMO

Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.

10.
Pharmaceuticals (Basel) ; 17(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38794231

RESUMO

Small molecules that specifically target viral polymerases-crucial enzymes governing viral genome transcription and replication-play a pivotal role in combating viral infections. Presently, approved polymerase inhibitors cover nine human viruses, spanning both DNA and RNA viruses. This review provides a comprehensive analysis of these licensed drugs, encompassing nucleoside/nucleotide inhibitors (NIs), non-nucleoside inhibitors (NNIs), and mutagenic agents. For each compound, we describe the specific targeted virus and related polymerase enzyme, the mechanism of action, and the relevant bioactivity data. This wealth of information serves as a valuable resource for researchers actively engaged in antiviral drug discovery efforts, offering a complete overview of established strategies as well as insights for shaping the development of next-generation antiviral therapeutics.

11.
Mol Inform ; 43(4): e202300183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258328

RESUMO

De novo design has been a hotly pursued topic for many years. Most recent developments have involved the use of deep learning methods for generative molecular design. Despite increasing levels of algorithmic sophistication, the design of molecules that are synthetically accessible remains a major challenge. Reaction-based de novo design takes a conceptually simpler approach and aims to address synthesisability directly by mimicking synthetic chemistry and driving structural transformations by known reactions that are applied in a stepwise manner. However, the use of a small number of hand-coded transformations restricts the chemical space that can be accessed and there are few examples in the literature where molecules and their synthetic routes have been designed and executed successfully. Here we describe the application of reaction-based de novo design to the design of synthetically accessible and biologically active compounds as proof-of-concept of our reaction vector-based software. Reaction vectors are derived automatically from known reactions and allow access to a wide region of synthetically accessible chemical space. The design was aimed at producing molecules that are active against PARP1 and which have improved brain penetration properties compared to existing PARP1 inhibitors. We synthesised a selection of the designed molecules according to the provided synthetic routes and tested them experimentally. The results demonstrate that reaction vectors can be applied to the design of novel molecules of biological relevance that are also synthetically accessible.


Assuntos
Desenho de Fármacos , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Humanos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Software
12.
Curr Med Chem ; 30(21): 2396-2420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35702779

RESUMO

Sulfur and oxygen containing-compounds are a relevant class of derivatives that is constantly growing due to their wide range of pharmacological activity, including the antiviral one. As proof of this, there are several FDA approved antiviral compounds having sulfur and oxygen in their structures. Among RNA viruses, the flavivirus genus (e.g. Dengue, West Nile, Yellow Fever and Zika viruses) holds a relevant place within zoonotic pathogens and thus flavivirus infections are considered a growing risk for the public health. As a consequence, the drug discovery process aimed at identify new anti- flavivirus agents is of great relevance and will help to find effective therapies not available yet. One of the most alarming features of flaviviruses is their ability to co-infect the host, thus aggravating the symptoms of the disease. Therefore, finding compounds endowed with a broad-spectrum anti-flavivirus activity is now becoming a pressing need. In this review, we describe the most promising compounds having both sulfur and oxygen in their structures characterized by a broad-spectrum activity against different flaviviruses. Furthermore, the synthetic procedures applied for the preparation of the described derivatives are also reported. Readers can be inspired by the contents of this review to design and synthesize more effective anti-flavivirus agents as well as to select viral or host targets to achieve an antiviral activity as broadly as possible.


Assuntos
Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Humanos , Flavivirus/genética , Oxigênio/uso terapêutico , Infecções por Flavivirus/tratamento farmacológico , Zika virus/genética , Enxofre/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecção por Zika virus/tratamento farmacológico
13.
Eur J Med Chem ; 252: 115283, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965228

RESUMO

Dengue virus (DENV), a mosquito-borne flavivirus, continues to be a major public health threat in many countries and no approved antiviral therapeutics are available yet. In this work, we designed and synthesized a series of sulfonyl anthranilic acid (SAA) derivatives using a ligand-based scaffold morphing approach of the 2,1-benzothiazine 2,2-dioxide core, previously used by us to develop DENV polymerase inhibitors resulting devoid of any cell-based antiviral activity. Several derivatives based on the new SAA chemotype exhibited potent inhibition against DENV infection in the cell-based assay but did not inhibit DENV NS5 polymerase activity in the in vitro de novo initiation and elongation assays. Notably, best compounds 26 and 39 showed EC50 values in the range of 0.54-1.36 µM against cells infected with the four dengue serotypes (DENV-1-4). Time-of-drug-addition assay revealed that analogue 26 is a post-entry replication inhibitor that appears to be specific for cells of primate origin, implicating a host target with a high barrier to resistance. In conclusion, SAA derivatives offer a valuable starting point for developing effective Dengue antiviral therapeutics.


Assuntos
Vírus da Dengue , Dengue , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Sorogrupo , Replicação Viral
14.
Virology ; 583: 1-13, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060797

RESUMO

Type I interferon (IFN-I) evasion by Dengue virus (DENV) is key in DENV pathogenesis. The non-structural protein 5 (NS5) antagonizes IFN-I response through the degradation of the signal transducer and activator of transcription 2 (STAT2). We developed a K562 cell-based platform, for high throughput screening of compounds potentially counteracting the NS5-mediated antagonism of IFN-I signaling. Upon a screening with a library of 1220 approved drugs, 3 compounds previously linked to DENV inhibition (Apigenin, Chrysin, and Luteolin) were identified. Luteolin and Apigenin determined a significant inhibition of DENV2 replication in Huh7 cells and the restoration of STAT2 phosphorylation in both cell systems. Apigenin and Luteolin were able to stimulate STAT2 even in the absence of infection. Despite the "promiscuous" and "pan-assay-interfering" nature of Luteolin, Apigenin promotes STAT2 Tyr 689 phosphorylation and activation, highlighting the importance of screening for compounds able to interact with host factors, to counteract viral proteins capable of dampening innate immune responses.


Assuntos
Vírus da Dengue , Apigenina/farmacologia , Vírus da Dengue/fisiologia , Luteolina/farmacologia , Transdução de Sinais , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Humanos
15.
Bioorg Med Chem ; 20(2): 866-76, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22197397

RESUMO

Hepatitis C virus (HCV) infection has been recognized as the major cause of liver failure that can lead to hepatocellular carcinoma. Among all the HCV proteins, NS5B polymerase represents a leading target for drug discovery strategies. Herein, we describe our initial research efforts towards the identification of new chemotypes as allosteric NS5B inhibitors. In particular, the design, synthesis, in vitro anti-NS5B and in cellulo anti-HCV evaluation of a series of 1-oxo-1H-pyrido[2,1-b][1,3]benzothiazole-4-carboxylate derivatives are reported. Some of the newly synthesized compounds showed an IC(50) ranging from 11 to 23 µM, and molecular modeling and biochemical studies suggested that the thumb domain could be the target site for this new class of NS5B inhibitors.


Assuntos
Benzotiazóis/química , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/farmacologia , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Estrutura Terciária de Proteína , Software , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
16.
Viruses ; 14(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35746629

RESUMO

Pyridobenzothiazolone derivatives are a promising class of broad-spectrum antivirals. However, the mode of action of these compounds remains poorly understood. The HeE1-17Y derivative has already been shown to be a potent compound against a variety of flaviviruses of global relevance. In this work, the mode of action of HeE1-17Y has been studied for West Nile virus taking advantage of reporter replication particles (RRPs). Viral infectivity was drastically reduced by incubating the compound with the virus before infection, thus suggesting a direct interaction with the viral particles. Indeed, RRPs incubated with the inhibitor appeared to be severely compromised in electron microscopy analysis. HeE1-17Y is active against other enveloped viruses, including SARS-CoV-2, but not against two non-enveloped viruses, suggesting a virucidal mechanism that involves the alteration of the viral membrane.


Assuntos
COVID-19 , Flavivirus , Vírus de RNA , Vírus , Antivirais/farmacologia , Humanos , SARS-CoV-2
17.
Eur J Med Chem ; 241: 114656, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35963131

RESUMO

Antimicrobial resistance (AMR) represents a global health issue threatening our social lifestyle and the world economy. Efflux pumps are widely involved in AMR by playing a primary role in the development of specific mechanisms of resistance. In addition, they seem to be involved in the process of biofilm formation and maintenance, contributing to enhance the risk of creating superbugs difficult to treat. Accordingly, the identification of non-antibiotic molecules able to block efflux pumps, namely efflux pump inhibitors (EPIs), could be a promising strategy to counteract AMR and restore the antimicrobial activity of ineffective antibiotics. Herein, we enlarge the knowledge about the structure-activity relationship of 2-phenylquinoline Staphylococcus aureus NorA EPIs by reporting a new series of very potent C-6 functionalized derivatives. Best compounds significantly inhibited ethidium bromide efflux in a NorA-overexpressing S. aureus strain (SA-1199B) and strongly synergized at very low concentrations (0.20-0.78 µg/mL) with ciprofloxacin (CPX) against CPX-resistant S. aureus strains (SA-1199B and SA-K2378), as proved by checkerboard and time-kill experiments. In addition, some of these EPIs (9b and 10a) produced a post-antibiotic effect of 1.2 h and strongly enhanced antibiofilm activity of CPX against SA-1199B strain. Interestingly, at the concentrations used to reach synergy with CPX against resistant S. aureus strains, most of the EPI compounds did not show any human cell toxicity. Finally, by exploiting the recent released crystal structure of NorA, we observed that best EPI 9b highlighted a favourable docking pose, establishing some interesting interactions with key residues.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias , Biofilmes , Ciprofloxacina/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Plâncton/metabolismo , Staphylococcus aureus
18.
ACS Med Chem Lett ; 13(5): 855-864, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35571875

RESUMO

A selection of compounds from a proprietary library, based on chemical diversity and various biological activities, was evaluated as potential inhibitors of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in a phenotypic-based screening assay. A compound based on a 2-phenylquinoline scaffold emerged as the most promising hit, with EC50 and CC50 values of 6 and 18 µM, respectively. The subsequent selection of additional analogues, along with the synthesis of ad hoc derivatives, led to compounds that maintained low µM activity as inhibitors of SARS-CoV-2 replication and lacked cytotoxicity at 100 µM. In addition, the most promising congeners also show pronounced antiviral activity against the human coronaviruses HCoV-229E and HCoV-OC43, with EC50 values ranging from 0.2 to 9.4 µM. The presence of a 6,7-dimethoxytetrahydroisoquinoline group at the C-4 position of the 2-phenylquinoline core gave compound 6g that showed potent activity against SARS-CoV-2 helicase (nsp13), a highly conserved enzyme, highlighting a potentiality against emerging HCoVs outbreaks.

19.
Eur J Med Chem ; 210: 112992, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33208235

RESUMO

The mosquito-borne viruses belonging to the genus Flavivirus such as Dengue virus (DENV) and Zika virus (ZIKV) cause human infections ranging from mild flu-like symptoms to hemorrhagic fevers, hepatitis, and neuropathies. To date, there are vaccines only for few flaviviruses while no effective treatments are available. Pyridobenzothiazole (PBTZ) derivatives are a class of compounds endowed with a promising broad-spectrum anti-flavivirus activity and most of them have been reported as potent inhibitors of the flaviviral NS5 polymerase. However, synthesis of PBTZ analogues entails a high number of purification steps, the use of hazardous reagents and environmentally unsustainable generation of waste. Considering the promising antiviral activity of PBTZ analogues which require further exploration, in this work, we report the development of a new and sustainable three-component reaction (3CR) that can be combined with a basic hydrolysis in a one-pot procedure to obtain the PBTZ scaffold, thus reducing the number of synthetic steps, improving yields and saving time. 3CR was significantly explored in order to demonstrate its wide scope by using different starting materials. In addition, taking advantage of these procedures, we next designed and synthesized a new set of PBTZ analogues that were tested as anti-DENV-2 and anti-ZIKV agents. Compound 22 inhibited DENV-2 NS5 polymerase with an IC50 of 10.4 µM and represented the best anti-flavivirus compound of the new series by inhibiting DENV-2- and ZIKV-infected cells with EC50 values of 1.2 and 5.0 µM, respectively, that translates into attractive selectivity indexes (SI - 83 and 20, respectively). These results strongly reaffirm PBTZ derivatives as promising anti-flavivirus agents that now can be synthesized through a convenient and sustainable 3CR in order to obtain more potent compounds for further pre-clinical development studies.


Assuntos
Antivirais/farmacologia , Benzotiazóis/farmacologia , Flavivirus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Benzotiazóis/síntese química , Benzotiazóis/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
20.
ChemMedChem ; 16(19): 3044-3059, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34032014

RESUMO

Antibiotic resistance breakers, such as efflux pump inhibitors (EPIs), represent a powerful alternative to the development of new antimicrobials. Recently, by using previously described EPIs, we developed pharmacophore models able to identify inhibitors of NorA, the most studied efflux pump of Staphylococcus aureus. Herein we report the pharmacophore-based virtual screening of a library of new potential NorA EPIs generated by an in-silico scaffold hopping approach of the quinoline core. After chemical synthesis and biological evaluation of the best virtual hits, we found the quinazoline core as the best performing scaffold. Accordingly, we designed and synthesized a series of functionalized 2-arylquinazolines, which were further evaluated as NorA EPIs. Four of them exhibited a strong synergism with ciprofloxacin and a good inhibition of ethidium bromide efflux on resistant S. aureus strains coupled with low cytotoxicity against human cell lines, thus highlighting a promising safety profile.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Quinazolinas/farmacologia , Quinolinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Quinazolinas/síntese química , Quinazolinas/química , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa