Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(15): 7371-7376, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30842279

RESUMO

Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence-albeit less strongly than species-specific pathogens-and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.


Assuntos
Consórcios Microbianos/fisiologia , Modelos Biológicos , Micorrizas/fisiologia , Myristicaceae , Plântula , Microbiologia do Solo , Myristicaceae/genética , Myristicaceae/crescimento & desenvolvimento , Myristicaceae/microbiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/microbiologia
2.
Am Nat ; 196(4): 472-486, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32970465

RESUMO

AbstractSpecialized pathogens are thought to maintain plant community diversity; however, most ecological studies treat pathogens as a black box. Here we develop a theoretical model to test how the impact of specialized pathogens changes when plant resistance genes (R-genes) mediate susceptibility. This work synthesizes two major hypotheses: the gene-for-gene model of pathogen resistance and the Janzen-Connell hypothesis of pathogen-mediated coexistence. We examine three scenarios. First, R-genes do not affect seedling survival; in this case, pathogens promote diversity. Second, seedlings are protected from pathogens when their R-gene alleles and susceptibility differ from those of nearby conspecific adults, thereby reducing transmission. If resistance is not costly, pathogens are less able to promote diversity because populations with low R-gene diversity suffer higher mortality, putting those populations at a disadvantage and potentially causing their exclusion. R-gene diversity may also be reduced during population bottlenecks, creating a priority effect. Third, when R-genes affect survival but resistance is costly, populations can avoid extinction by losing resistance alleles, as they cease paying a cost that is unneeded. Thus, the impact pathogens can have on tree diversity depends on the mechanism of plant-pathogen interactions. Future empirical studies should examine which of these scenarios most closely reflects the real world.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Plantas/genética , Biodiversidade , Desenvolvimento Vegetal , Doenças das Plantas/microbiologia , Plantas/microbiologia , Plântula/genética , Plântula/microbiologia
3.
Ecol Lett ; 22(8): 1274-1284, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31149765

RESUMO

Plant-soil feedback (PSF) theory provides a powerful framework for understanding plant dynamics by integrating growth assays into predictions of whether soil communities stabilise plant-plant interactions. However, we lack a comprehensive view of the likelihood of feedback-driven coexistence, partly because of a failure to analyse pairwise PSF, the metric directly linked to plant species coexistence. Here, we determine the relative importance of plant evolutionary history, traits, and environmental factors for coexistence through PSF using a meta-analysis of 1038 pairwise PSF measures. Consistent with eco-evolutionary predictions, feedback is more likely to mediate coexistence for pairs of plant species (1) associating with similar guilds of mycorrhizal fungi, (2) of increasing phylogenetic distance, and (3) interacting with native microbes. We also found evidence for a primary role of pathogens in feedback-mediated coexistence. By combining results over several independent studies, our results confirm that PSF may play a key role in plant species coexistence, species invasion, and the phylogenetic diversification of plant communities.


Assuntos
Micorrizas , Filogenia , Microbiologia do Solo , Plantas , Solo
4.
New Phytol ; 214(1): 455-467, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28042878

RESUMO

Tropical forest productivity is sustained by the cycling of nutrients through decomposing organic matter. Arbuscular mycorrhizal (AM) fungi play a key role in the nutrition of tropical trees, yet there has been little experimental investigation into the role of AM fungi in nutrient cycling via decomposing organic material in tropical forests. We evaluated the responses of AM fungi in a long-term leaf litter addition and removal experiment in a tropical forest in Panama. We described AM fungal communities using 454-pyrosequencing, quantified the proportion of root length colonised by AM fungi using microscopy, and estimated AM fungal biomass using a lipid biomarker. AM fungal community composition was altered by litter removal but not litter addition. Root colonisation was substantially greater in the superficial organic layer compared with the mineral soil. Overall colonisation was lower in the litter removal treatment, which lacked an organic layer. There was no effect of litter manipulation on the concentration of the AM fungal lipid biomarker in the mineral soil. We hypothesise that reductions in organic matter brought about by litter removal may lead to AM fungi obtaining nutrients from recalcitrant organic or mineral sources in the soil, besides increasing fungal competition for progressively limited resources.


Assuntos
Florestas , Micorrizas/fisiologia , Folhas de Planta/fisiologia , Clima Tropical , Biodiversidade , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , Solo/química
5.
Ecol Appl ; 27(6): 1946-1957, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28556511

RESUMO

Plant-soil interactions have been shown to determine plant community composition in a wide range of environments. However, how plants distinctly interact with beneficial and detrimental organisms across mosaic landscapes containing fragmented habitats is still poorly understood. We experimentally tested feedback responses between plants and soil microbial communities from adjacent habitats across a disturbance gradient within a human-modified tropical montane landscape. In a greenhouse experiment, two components of soil microbial communities were amplified; arbuscular mycorrhizal fungi (AMF) and a filtrate excluding AMF spores from the soils of pastures (high disturbance), coffee plantations (intermediate disturbance), and forest fragments (low disturbance), using potted seedlings of 11 plant species common in these habitats (pasture grass, coffee, and nine native species). We then examined their effects on growth of these same 11 host species with reciprocal habitat inoculation. Most plant species received a similar benefit from AMF, but differed in their response to the filtrates from the three habitats. Soil filtrate from pastures had a net negative effect on plant growth, while filtrates from coffee plantations and forests had a net positive effect on plant growth. Pasture grass, coffee, and five pioneer tree species performed better with the filtrate from "away" (where these species rarely occur) compared to "home" (where these species typically occur) habitat soils, while four shade-tolerant tree species grew similarly with filtrates from different habitats. These results suggest that pastures accumulate species-specific soil enemies, while coffee plantations and forests accumulate beneficial soil microbes that benefit pioneer native plants and coffee, respectively. Thus, compared to AMF, soil filtrates exerted stronger habitat and host-specific effects on plants, being more important mediators of plant-soil feedbacks across contrasting habitats.


Assuntos
Fenômenos Fisiológicos Bacterianos , Ecossistema , Micorrizas/fisiologia , Microbiologia do Solo , Criação de Animais Domésticos , Biodiversidade , Coffea , Colômbia , Produção Agrícola , Florestas , Pradaria , Especificidade da Espécie
6.
Ecol Lett ; 19(4): 383-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26833573

RESUMO

Tropical forests are renowned for their high diversity, yet in many sites a single tree species accounts for the majority of the individuals in a stand. An explanation for these monodominant forests remains elusive, but may be linked to mycorrhizal symbioses. We tested three hypotheses by which ectomycorrhizas might facilitate the dominance of the tree, Oreomunnea mexicana, in montane tropical forest in Panama. We tested whether access to ectomycorrhizal networks improved growth and survival of seedlings, evaluated whether ectomycorrhizal fungi promote seedling growth via positive plant-soil feedback, and measured whether Oreomunnea reduced inorganic nitrogen availability. We found no evidence that Oreomunnea benefits from ectomycorrhizal networks or plant-soil feedback. However, we found three-fold higher soil nitrate and ammonium concentrations outside than inside Oreomunnea-dominated forest and a correlation between soil nitrate and Oreomunnea abundance in plots. Ectomycorrhizal effects on nitrogen cycling might therefore provide an explanation for the monodominance of ectomycorrhizal tree species worldwide.


Assuntos
Biodiversidade , Florestas , Micorrizas/fisiologia , Ciclo do Nitrogênio/fisiologia , Nitrogênio/metabolismo , Árvores/microbiologia , Panamá , Microbiologia do Solo , Clima Tropical
7.
Nature ; 466(7307): 752-5, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20581819

RESUMO

The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.


Assuntos
Biodiversidade , Microbiologia do Solo , Solo/análise , Árvores/classificação , Árvores/crescimento & desenvolvimento , Clima Tropical , Animais , Biomassa , Simulação por Computador , Retroalimentação Fisiológica , Cadeia Alimentar , Insetos/fisiologia , Modelos Biológicos , Panamá , Densidade Demográfica , Plântula/crescimento & desenvolvimento , Especificidade da Espécie , Árvores/microbiologia , Árvores/parasitologia , Vertebrados/fisiologia
8.
Proc Biol Sci ; 282(1812): 20151001, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26224711

RESUMO

Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of individual plants on their local environments (individual plant effects). Here, we synthesize this work using meta-analysis to show that plant effects are strong and pervasive across ecosystems on six continents. Overall, soil properties beneath individual plants differ from those of neighbours by an average of 41%. Although the magnitudes of individual plant effects exhibit weak relationships with climate and latitude, they are significantly stronger in deserts and tundra than forests, and weaker in intensively managed ecosystems. The ubiquitous effects of plant individuals and species on local soil properties imply that individual plant effects have a role in plant-soil feedbacks, linking individual plants with biogeochemical processes at the ecosystem scale.


Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Solo/química
9.
Oecologia ; 177(2): 561-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25502290

RESUMO

Lianas are an important component of tropical forests, contributing up to 25% of the woody stems and 35% of woody species diversity. Lianas invest less in structural support but more in leaves compared to trees of similar biomass. These physiological and morphological differences suggest that lianas may interact with neighboring plants in ways that are different from similarly sized trees. However, the vast majority of past liana competition studies have failed to identify the unique competitive effects of lianas by controlling for the amount of biomass removed. We assessed liana competition in the forest understory over the course of 3 years by removing liana biomass and an equal amount of tree biomass in 40 plots at 10 sites in a secondary tropical moist forest in central Panama. We found that growth of understory trees and lianas, as well as planted seedlings, was limited due to competitive effects from both lianas and trees, though the competitive impacts varied by species, season, and size of neighbors. The removal of trees resulted in greater survival of planted seedlings compared to the removal of lianas, apparently related to a greater release from competition for light. In contrast, lianas had a species-specific negative effect on drought-tolerant Dipteryx oleifera seedlings during the dry season, potentially due to competition for water. We conclude that, at local scales, lianas and trees have unique and differential effects on understory dynamics, with lianas potentially competing more strongly during the dry season, and trees competing more strongly for light.


Assuntos
Florestas , Desenvolvimento Vegetal , Árvores/fisiologia , Biomassa , Meio Ambiente , Luz , Panamá , Folhas de Planta/crescimento & desenvolvimento , Estações do Ano , Plântula/crescimento & desenvolvimento , Especificidade da Espécie , Clima Tropical , Água
10.
Ecol Evol ; 14(5): e11360, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38706936

RESUMO

In degraded ecosystems, soil microbial communities (SMCs) may influence the outcomes of ecological restoration. Restoration practices can affect SMCs, though it is unclear how variation in the onset of restoration activities in woodlands affects SMCs, how those SMCs influence the performance of hard-to-establish woodland forbs, and how different woodland forbs shape SMCs. In this study, we quantified soil properties and species abundances in an oak woodland restoration chronosequence (young, intermediate, and old restorations). We measured the growth of three woodland forb species when inoculated with live whole-soil from young, intermediate, or old restorations. We used DNA metabarcoding to characterize SMCs of each inoculum treatment and the soil after conditioning by each plant species. Our goals were to (1) understand how time since the onset of restoration affected soil abiotic properties, plant communities, and SMCs in a restoration chronosequence, (2) test growth responses of three forb species to whole-soil inoculum from restoration sites, and (3) characterize changes in SMCs before and after conditioning by each forb species. Younger restored woodlands had greater fire-sensitive tree species and lower concentrations of soil phosphorous than intermediate or older restored woodlands. Bacterial and fungal soil communities varied significantly among sites. Forbs exhibited the greatest growth in soil from the young restoration. Each forb species developed a unique soil microbial community. Our results highlight how restoration practices affect SMCs, which can in turn affect the growth of hard-to-establish forb species. Our results also highlight that the choice of forb species can alter SMCs, which could have long-term potential consequences for restoration success.

11.
Oecologia ; 171(2): 449-58, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22865092

RESUMO

Encroachment of woody vegetation into grasslands is a widespread phenomenon that alters plant community composition and ecosystem function. Woody encroachment is often the result of fire suppression, but it may also be related to changes in resource availability associated with global environmental change. We tested the relative strength of three important global change factors (CO(2) enrichment, nitrogen deposition, and loss of herbaceous plant diversity) on the first 3 years of bur oak (Quercus macrocarpa) seedling performance in a field experiment in central Minnesota, USA. We found that loss of plant diversity decreased initial oak survival but increased overall oak growth. Conversely, elevated CO(2) increased initial oak seedling survival and reduced overall growth, especially at low levels of diversity. Nitrogen deposition surprisingly had no net effect on survival or growth. The magnitude of these effects indicates that long-term woody encroachment trends may be most strongly associated with those few individuals that survive, but grow much larger in lower diversity patches. Further, while the CO(2) results and the species richness results appear to describe opposing trends, this is due only to the fact that the natural drivers are moving in opposite directions (decreasing species richness and increasing CO(2)). Interestingly, the mechanisms that underlie both patterns are very similar, increased CO(2) and increased species richness both increase herbaceous biomass which (1) increases belowground competition for resources and (2) increases facilitation of early plant survival under a more diverse plant canopy; in other words, both competition and facilitation help determine community composition in these grasslands.


Assuntos
Biodiversidade , Dióxido de Carbono/metabolismo , Quercus/crescimento & desenvolvimento , Ecossistema , Minnesota , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional
12.
Ecology ; 92(1): 47-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21560675

RESUMO

In the lowlands of central Panama, the Neotropical pioneer tree Trema micrantha (sensu lato) exists as two cryptic species: "landslide" Trema is restricted to landslides and road embankments, while "gap" Trema occurs mostly in treefall gaps. In this study, we explored the relative contributions of biotic interactions and physical factors to habitat segregation in T. micrantha. Field surveys showed that soils from landslides were significantly richer in available phosphorus and harbored distinct arbuscular mycorrhizal fungal (AMF) communities compared to gap soils. Greenhouse experiments designed to determine the effect of these abiotic and biotic differences showed that: (1) both landslide and gap species performed better in sterilized soil from their own habitat, (2) the availability of phosphorus and nitrogen was limiting in gap and landslide soils, respectively, (3) a standardized AMF inoculum increased performance of both species, but primarily on gap soils, and (4) landslide and gap species performed better when sterilized soils were inoculated with the microbial inoculum from their own habitat. A field experiment confirmed that survival and growth of each species was highest in its corresponding habitat. This experiment also showed that browsing damage significantly decreased survival of gap Trema on landslides. We conclude that belowground interactions with soil microbes and aboveground interactions with herbivores contribute in fundamental ways to processes that may promote and reinforce adaptive speciation.


Assuntos
Ecossistema , Micorrizas/fisiologia , Microbiologia do Solo , Solo/química , Árvores , Animais , Nitrogênio/química , Panamá , Fósforo/química
13.
Ecology ; 92(2): 296-303, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21618909

RESUMO

Ecosystem productivity commonly increases asymptotically with plant species diversity, and determining the mechanisms responsible for this well-known pattern is essential to predict potential changes in ecosystem productivity with ongoing species loss. Previous studies attributed the asymptotic diversity-productivity pattern to plant competition and differential resource use (e.g., niche complementarity). Using an analytical model and a series of experiments, we demonstrate theoretically and empirically that host-specific soil microbes can be major determinants of the diversity-productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500%, primarily because of the strong effect of density-dependent disease on productivity at low diversity. Correspondingly, disease was higher in plants grown in conspecific-trained soils than heterospecific-trained soils (demonstrating host-specificity), and productivity increased and host-specific disease decreased with increasing community diversity, suggesting that disease was the primary cause of reduced productivity in species-poor treatments. In sterilized, microbe-free soils, the increase in productivity with increasing plant species number was markedly lower than the increase measured in the presence of soil microbes, suggesting that niche complementarity was a weaker determinant of the diversity-productivity relationship. Our results demonstrate that soil microbes play an integral role as determinants of the diversity-productivity relationship.


Assuntos
Biodiversidade , Desenvolvimento Vegetal , Microbiologia do Solo , Modelos Biológicos , Plantas/classificação
14.
Ecol Evol ; 11(4): 1756-1768, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33614002

RESUMO

Plant-soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta-analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 ≤  r ¯  ≤ 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance-PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness.

15.
Ecology ; 91(9): 2594-603, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20957954

RESUMO

A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant-soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions between tree seedlings and their associated arbuscular mycorrhizal fungi (AMF) lead to plant-soil feedback. Specifically, do tropical seedlings modify their own AMF communities in a manner that either favors or inhibits the next cohort of conspecific seedlings (i.e., positive or negative feedback, respectively)? Seedlings of two shade-tolerant tree species (Eugenia nesiotica, Virola surinamensis) and two pioneer tree species (Luehea seemannii, Apeiba aspera) were grown in pots containing identical AMF communities composed of equal amounts of inoculum of six co-occurring AMF species. The different AMF-host combinations were all exposed to two light levels. Under low light (2% PAR), only two of the six AMF species sporulated, and we found that host identity did not influence composition of AMF spore communities. However, relative abundances of three of the four AMF species that produced spores were influenced by host identity when grown under high light (20% PAR). Furthermore, spores of one of the AMF species, Glomus geosporum, were common in soils of Luehea and Eugenia but absent in soils of Apeiba and Virola. We then conducted a reciprocal experiment to test whether AMF communities previously modified by Luehea and Apeiba differentially affected the growth of conspecific and heterospecific seedlings. Luehea seedling growth did not differ between soils containing AMF communities modified by Luehea and Apeiba. However, Apeiba seedlings were significantly larger when grown with Apeiba-modified AMF communities, as compared to Apeiba seedlings grown with Luehea-modifed AMF communities. Our experiments suggest that interactions between tropical trees and their associated AMF are species-specific and that these interactions may shape both tree and AMF communities through plant-soil feedback.


Assuntos
Fungos/fisiologia , Plântula/microbiologia , Solo , Simbiose/fisiologia , Árvores/microbiologia , Ecossistema , Luz , Myristicaceae/microbiologia , Myrtaceae/microbiologia , Esporos Fúngicos , Tiliaceae/microbiologia , Fatores de Tempo
16.
Ecology ; 101(11): e03147, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33460105

RESUMO

Theory predicts that stable species coexistence will occur when population growth rates of competitively dominant species are suppressed when at high conspecific density. Although there is now compelling evidence that plant communities exhibit negative density dependence, the relative importance of the underlying processes leading to these patterns is rarely tested. We coupled reciprocal greenhouse and field experiments with community dynamics modeling to untangle the relative importance of soil biota from competition as stabilizing forces to coexistence. We found that (1) plant-soil biotic interactions compared to competitive interactions were stronger stabilizing forces, (2) only the strength of plant-soil biotic interactions was dependent on plant evolutionary history, and (3) the variation in the strength of plant-soil biotic interactions was correlated with relative abundance patterns in an opposite way than was the variation in the strength of competitive interactions. Collectively, our results demonstrate the fundamental role soil biota have in maintaining plant community diversity.


Assuntos
Biota , Solo , Plantas , Microbiologia do Solo
17.
Nat Commun ; 11(1): 2204, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371877

RESUMO

Empirical studies show that plant-soil feedbacks (PSF) can generate negative density dependent (NDD) recruitment capable of maintaining plant community diversity at landscape scales. However, the observation that common plants often exhibit relatively weaker NDD than rare plants at local scales is difficult to reconcile with the maintenance of overall plant diversity. We develop a spatially explicit simulation model that tracks the community dynamics of microbial mutualists, pathogens, and their plant hosts. We find that net PSF effects vary as a function of both host abundance and key microbial traits (e.g., host affinity) in ways that are compatible with both common plants exhibiting relatively weaker local NDD, while promoting overall species diversity. The model generates a series of testable predictions linking key microbial traits and the relative abundance of host species, to the strength and scale of PSF and overall plant community diversity.


Assuntos
Ecossistema , Micorrizas/fisiologia , Plantas/metabolismo , Microbiologia do Solo , Solo/química , Simbiose/fisiologia , Algoritmos , Retroalimentação Fisiológica/fisiologia , Interações entre Hospedeiro e Microrganismos , Modelos Teóricos , Micorrizas/classificação , Plantas/classificação , Plantas/microbiologia , Especificidade da Espécie
18.
Nat Commun ; 11(1): 2684, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457365

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Ecol Evol ; 10(12): 5506-5516, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32607170

RESUMO

Pathogens have the potential to shape plant community structure, and thus, it is important to understand the factors that determine pathogen diversity and infection in communities. The abundance, origin, and evolutionary relationships of plant hosts are all known to influence pathogen patterns and are typically studied separately. We present an observational study that examined the influence of all three factors and their interactions on the diversity of and infection of several broad taxonomic groups of foliar, floral, and stem pathogens across three sites in a temperate grassland in the central United States. Despite that pathogens are known to respond positively to increases in their host abundances in other systems, we found no relationship between host abundance and either pathogen diversity or infection. Native and exotic plants did not differ in their infection levels, but exotic plants hosted a more generalist pathogen community compared to native plants. There was no phylogenetic signal across plants in pathogen diversity or infection. The lack of evidence for a role of abundance, origin, and evolutionary relationships in shaping patterns of pathogens in our study might be explained by the high generalization and global distributions of our focal pathogen community, as well as the high diversity of our plant host community. In general, the community-level patterns of aboveground pathogen infections have received less attention than belowground pathogens, and our results suggest that their patterns might not be explained by the same drivers.

20.
PLoS One ; 15(6): e0234537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574172

RESUMO

Plant-soil feedback studies attempt to understand the interplay between composition of plant and soil microbial communities. A growing body of literature suggests that plant species can coexist when they interact with a subset of the soil microbial community that impacts plant performance. Most studies focus on the microbial community in the soil rhizosphere; therefore, the degree to which the bacterial community within plant roots (root-endophytic compartment) influences plant-microbe interactions remains relatively unknown. To determine if there is an interaction between conspecific vs heterospecific soil microbes and plant performance, we sequenced root-endophytic bacterial communities of five tallgrass-prairie plant species, each reciprocally grown with soil microbes from each hosts' soil rhizosphere. We found evidence of plant-soil feedbacks for some pairs of plant hosts; however, the strength and direction of feedbacks varied substantially across plant species pairs-from positive to negative feedbacks. Additionally, each plant species harbored a unique subset of root-endophytic bacteria. Conspecifics that hosted similar bacterial communities were more similar in biomass than individuals that hosted different bacterial communities, suggesting an important functional link between root-endophytic bacterial community composition and plant fitness. Our findings suggest a connection between an understudied component of the root-endophytic microbiome and plant performance, which may have important implications in understanding plant community composition and coexistence.


Assuntos
Microbiota/genética , Desenvolvimento Vegetal/genética , Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Endófitos/classificação , Endófitos/genética , Pradaria , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas/genética , RNA Ribossômico 16S/genética , Rizosfera
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa