Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125848

RESUMO

Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.


Assuntos
Aminoaciltransferases , Zinco , Humanos , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Zinco/metabolismo , Zinco/química , Sítios de Ligação , Cobalto/metabolismo , Cobalto/química , Ligação Proteica , Modelos Moleculares
2.
ACS Infect Dis ; 10(8): 2755-2774, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38953453

RESUMO

Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.


Assuntos
Antagonistas do Ácido Fólico , Tetra-Hidrofolato Desidrogenase , Triazinas , Trypanosoma brucei brucei , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Humanos , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Triazinas/farmacologia , Triazinas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Proguanil/farmacologia , Proguanil/química , Timidilato Sintase/antagonistas & inibidores , Timidilato Sintase/química , Timidilato Sintase/metabolismo , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Benzimidazóis/farmacologia , Benzimidazóis/química , Relação Estrutura-Atividade , Antiprotozoários/farmacologia , Antiprotozoários/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Oxirredutases
3.
Molecules ; 22(3): 426, 2017.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15405

RESUMO

Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues (1-3) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes (Trypanosoma brucei PTR1-TbPTR1 and Leishmania major-LmPTR1) and parasites (Trypanosoma brucei and Leishmania infantum). A crystal structure of TbPTR1 in complex with compound 1 and the first crystal structures of LmPTR1-flavanone complexes (compounds 1 and 3) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa