Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000183

RESUMO

Landraces are an important reservoir of genetic variation that can expand the narrow genetic base of cultivated cotton. In this study, quantitative trait loci (QTL) analysis was conducted using an F2 population developed from crosses between the landrace Hopi and inbred TM-1. A high-density genetic map spanning 2253.11 and 1932.21 cM for the A and D sub-genomes, respectively, with an average marker interval of 1.14 cM, was generated using the CottonSNP63K array. The linkage map showed a strong co-linearity with the physical map of cotton. A total of 21 QTLs were identified, controlling plant height (1), bract type (1), boll number (1), stem color (2), boll pitting (2), fuzz fiber development (2), boll shape (3), boll point (4), and boll glanding (5). In silico analysis of the novel QTLs for boll glanding identified a total of 13 candidate genes. Analysis of tissue-specific expression of the candidate genes suggests roles for the transcription factors bHLH1, MYB2, and ZF1 in gland formation. Comparative sequencing of open reading frames identified early stop codons in all three transcription factors in Hopi. Functional validation of these genes offers avenues to reduce glanding and, consequently, lower gossypol levels in cottonseeds without compromising the defense mechanisms of the plant against biotic stresses.


Assuntos
Mapeamento Cromossômico , Gossypium , Locos de Características Quantitativas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Ligação Genética , Cromossomos de Plantas/genética , Fenótipo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
2.
Theor Appl Genet ; 134(4): 1133-1146, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33386862

RESUMO

KEY MESSAGE: Alien introgressions that were captured in the genome of diploid plants segregating from progenies of monosomic alien addition lines of S. lycopersicoides confer novel phenotypes with commercial and agronomic value in tomato breeding. Solanum lycopersicoides is a wild relative of tomato with a natural adaptation to a wide array of biotic and abiotic challenges. In this study, we identified and characterized diploid plants segregating from the progenies of monosomic alien addition lines (MAALs) of S. lycopersicoides to establish their potential as donors in breeding for target trait improvement in tomato. Molecular genotyping identified 28 of 38 MAAL progenies having the complete chromosome complement of the cultivated tomato parent and limited chromosome introgressions from the wild S. lycopersicoides parent. Analysis of SSR and indel marker profiles identified 34 unique alien introgressions in the 28 MAAL-derived introgression lines (MDILs) in the genetic background of tomato. Conserved patterns of alien introgressions were detected among sibs of MDILs 2, 3, 4 and 8. Across MDILs, a degree of preferential transmission of specific chromosome segments was also observed. Morphologically, the MDILs closely resembled the cultivated tomato more than S. lycopersicoides. The appearance of novel phenotypes in the MDILs that are lacking in the cultivated parent or the source MAALs indicates the capture of novel genetic variation by the diploid introgression lines that can add commercial and agronomic value to tomato. In particular, screening of representative MDILs for drought tolerance at the vegetative stage identified MDIL 2 and MDIL 11III as drought tolerant based on visual scoring. A regulated increase in stomatal conductance of MDIL 2 under drought stress indicates better water use efficiency that allowed it to survive for 7 days under 0% moisture level.


Assuntos
Cromossomos de Plantas/genética , Diploide , Genoma de Planta , Hibridização Genética , Melhoramento Vegetal/métodos , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Fenótipo
3.
PLoS One ; 15(11): e0242882, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227039

RESUMO

Solanum lycopersicoides is a wild nightshade relative of tomato with known resistance to a wide range of pests and pathogens, as well as tolerance to cold, drought and salt stress. To effectively utilize S. lycopersicoides as a genetic resource in breeding for tomato improvement, the underlying basis of observable traits in the species needs to be understood. Molecular markers are important tools that can unlock the genetic underpinnings of phenotypic variation in wild crop relatives. Unfortunately, DNA markers that are specific to S. lycopersicoides are limited in number, distribution and polymorphism rate. In this study, we developed a suite of S. lycopersicoides-specific SSR and indel markers by sequencing, building and analyzing a draft assembly of the wild nightshade genome. Mapping of a total of 1.45 Gb of S. lycopersicoides contigs against the tomato reference genome assembled a moderate number of contiguous reads into longer scaffolds. Interrogation of the obtained draft yielded SSR information for more than 55,000 loci in S. lycopersicoides for which more than 35,000 primers pairs were designed. Additionally, indel markers were developed based on sequence alignments between S. lycopersicoides and tomato. Synthesis and experimental validation of 345 primer sets resulted in the amplification of single and multilocus targets in S. lycopersicoides and polymorphic loci between S. lycopersicoides and tomato. Cross-species amplification of the 345 markers in tomato, eggplant, silverleaf nightshade and pepper resulted in varying degrees of transferability that ranged from 55 to 83%. The markers reported in this study significantly expands the genetic marker resource for S. lycopersicoides, as well as for related Solanum spp. for applications in genetics and breeding studies.


Assuntos
Marcadores Genéticos/genética , Reação em Cadeia da Polimerase , Solanum lycopersicum/genética , Genoma de Planta/genética , Análise de Sequência , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa