Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Pharmacol Exp Ther ; 388(1): 27-36, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37739805

RESUMO

Trauma is a leading cause of death in the United States. Advancements in shock resuscitation have been disappointing because the correct upstream mechanisms of injury are not being targeted. Recently, significant advancements have been shown using new cell-impermeant molecules that work by transferring metabolic water from swollen ischemic cells to the capillary, which restores tissue perfusion by microcirculatory decompression. The rapid normalization of oxygen transfer improves resuscitation outcomes. Since poor resuscitation and perfusion of trauma patients also causes critical illness and sepsis and can be mimicked by ischemia-reperfusion of splanchnic tissues, we hypothesized that inadequate oxygenation of the gut during trauma drives development of later shock and critical illness. We further hypothesized that this is caused by ischemia-induced water shifts causing compression no-reflow. To test this, the superior mesenteric artery of juvenile anesthetized swine was occluded for 30 minutes followed by 8 hours of reperfusion to induce mild splanchnic artery occlusion (SAO) shock. One group received the impermeant polyethylene glycol 20,000 Da (PEG-20k) that prevents metabolic cell swelling, and the other received a lactated Ringer's vehicle. Survival doubled in PEG-20k-treated swine along with improved macrohemodynamics and intestinal mucosal perfusion. Villus morphometry and plasma inflammatory cytokines normalized with impermeants. Plasma endotoxin rose over time after reperfusion, and impermeants abolished the rise. Inert osmotically active cell impermeants like PEG-20k improve intestinal reperfusion injury, SAO shock, and early signs of sepsis, which may be due to early restoration of mucosal perfusion and preservation of the septic barrier by reversal of ischemic compression no-reflow. SIGNIFICANCE STATEMENT: Significant advancements in treating shock and ischemia have been disappointing because the correct upstream causes have not been targeted. This study supports that poor tissue perfusion after intestinal ischemia from shock is caused by capillary compression no-reflow secondary to metabolic cell and tissue swelling since selectively targeting this issue with novel polyethylene glycol 20,000 Da-based cell-impermeant intravenous solutions reduces splanchnic artery occlusion shock, doubles survival time, restores tissue microperfusion, and preserves gut barrier function.


Assuntos
Estado Terminal , Sepse , Humanos , Suínos , Animais , Microcirculação , Isquemia/metabolismo , Polietilenoglicóis/farmacologia , Água , Artérias , Circulação Esplâncnica
2.
Ann Surg ; 275(5): e716-e724, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773641

RESUMO

OBJECTIVE: To compare early outcomes and 24-hour survival after LVR with the novel polyethylene glycol-20k-based crystalloid (PEG-20k), WB, or hextend in a preclinical model of lethal HS. BACKGROUND: Posttraumatic HS is a major cause of preventable death. current resuscitation strategies focus on restoring oxygen-carrying capacity (OCC) and coagulation with blood products. Our lab shows that PEG-20k is an effective non-sanguineous, LVR solution in acute models of HS through mechanisms targeting cell swelling-induced microcirculatory failure. METHODS: Male pigs underwent splenectomy followed by controlled hemorrhage until lactate reached 7.5-8.5 mmol/L. They were randomized to receive LVR with PEG-20k, WB, or Hextend. Surviving animals were recovered 4 hours post-LVR. Outcomes included 24-hour survival rates, mean arterial pressure, lactate, hemoglobin, and estimated intravascular volume changes. RESULTS: Twenty-four-hour survival rates were 100%, 16.7%, and 0% in the PEG-20k, WB, and Hextend groups, respectively (P= 0.001). PEG-20k significantly restored mean arterial press, intravascular volume, and capillary perfusion to baseline, compared to other groups. This caused complete lactate clearance despite decreased OCC. Neurological function was normal after next-day recovery in PEG-20k resuscitated pigs. CONCLUSION: Superior early and 24-hour outcomes were observed with PEG-20k LVR compared to WB and Hextend in a preclinical porcine model of lethal HS, despite decreased OCC from substantial volume-expansion. These findings demonstrate the importance of enhancing microcirculatory perfusion in early resuscitation strategies.


Assuntos
Choque Hemorrágico , Animais , Modelos Animais de Doenças , Humanos , Lactatos/farmacologia , Masculino , Microcirculação , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Ressuscitação , Choque Hemorrágico/terapia , Suínos
3.
Crit Care Med ; 50(2): e189-e198, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637412

RESUMO

OBJECTIVES: To investigate the therapeutic potential and underlying mechanisms of exogenous nicotinamide adenine dinucleotide+ on postresuscitation myocardial and neurologic dysfunction in a rat model of cardiac arrest. DESIGN: Thirty-eight rats were randomized into three groups: 1) Sham, 2) Control, and 3) NAD. Except for the sham group, untreated ventricular fibrillation for 6 minutes followed by cardiopulmonary resuscitation was performed in the control and NAD groups. Nicotinamide adenine dinucleotide+ (20 mg/kg) was IV administered at the onset of return of spontaneous circulation. SETTING: University-affiliated research laboratory. SUBJECTS: Sprague-Dawley rats. INTERVENTIONS: Nicotinamide adenine dinucleotide+. MEASUREMENTS AND MAIN RESULTS: Hemodynamic and myocardial function were measured at baseline and within 4 hours following return of spontaneous circulation. Survival analysis and Neurologic Deficit Score were performed up to 72 hours after return of spontaneous circulation. Adenosine triphosphate (adenosine triphosphate) level was measured in both brain and heart tissue. Mitochondrial respiratory chain function, acetylation level, and expression of Sirtuin3 and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 (NDUFA9) in isolated mitochondrial protein from both brain and heart tissue were evaluated at 4 hours following return of spontaneous circulation. The results demonstrated that nicotinamide adenine dinucleotide+ treatment improved mean arterial pressure (at 1 hr following return of spontaneous circulation, 94.69 ± 4.25 mm Hg vs 89.57 ± 7.71 mm Hg; p < 0.05), ejection fraction (at 1 hr following return of spontaneous circulation, 62.67% ± 6.71% vs 52.96% ± 9.37%; p < 0.05), Neurologic Deficit Score (at 24 hr following return of spontaneous circulation, 449.50 ± 82.58 vs 339.50 ± 90.66; p < 0.05), and survival rate compared with that of the control group. The adenosine triphosphate level and complex I respiratory were significantly restored in the NAD group compared with those of the control group. In addition, nicotinamide adenine dinucleotide+ treatment activated the Sirtuin3 pathway, down-regulating acetylated-NDUFA9 in the isolated mitochondria protein. CONCLUSIONS: Exogenous nicotinamide adenine dinucleotide+ treatment attenuated postresuscitation myocardial and neurologic dysfunction. The responsible mechanisms may involve the preservation of mitochondrial complex I respiratory capacity and adenosine triphosphate production, which involves the Sirtuin3-NDUFA9 deacetylation.


Assuntos
Parada Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , NAD/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Ressuscitação/normas , Animais , Modelos Animais de Doenças , Parada Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , NAD/uso terapêutico , Doenças do Sistema Nervoso/prevenção & controle , Ratos , Ratos Sprague-Dawley/lesões , Ratos Sprague-Dawley/metabolismo , Ressuscitação/métodos , Ressuscitação/estatística & dados numéricos
4.
J Surg Res ; 246: 482-489, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31635833

RESUMO

The Joint Commission has established medication reconciliation as a National Patient Safety Goal, but it has not been studied much in trauma even though it is integral to safe patient care. This article reviews the existing medication reconciliation strategies and their applicability to the trauma setting. To perform medication reconciliation, hospitals use a variety of strategies including pharmacists or pharmacy technicians, electronic medical record tools, and patient-centered strategies. All of these strategies are limited in trauma. Subpopulations such as injured children, the elderly, and those with brain trauma are particularly challenging and are at risk for suboptimal care from inaccurate medication reconciliation. Further research is necessary to create a safe and efficient system for trauma patients.


Assuntos
Reconciliação de Medicamentos/organização & administração , Segurança do Paciente , Centros de Traumatologia/organização & administração , Ferimentos e Lesões/terapia , Fatores Etários , Idoso , Criança , Registros Eletrônicos de Saúde/organização & administração , Humanos , Assistência Centrada no Paciente/organização & administração , Farmacêuticos/organização & administração , Técnicos em Farmácia/organização & administração , Papel Profissional , Estados Unidos
5.
Crit Care Med ; 46(12): e1190-e1195, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30234522

RESUMO

OBJECTIVES: Polyethylene glycol-20k is a hybrid cell impermeant that reduces ischemia injury and improves microcirculatory flow during and following low flow states through nonenergy-dependent water transfer in the microcirculation. We investigated the effects of polyethylene glycol-20k on postresuscitation microcirculation, myocardial and cerebral function, and duration of survival in a rat model of cardiopulmonary resuscitation. DESIGN: Ventricular fibrillation was induced in 20 male Sprague Dawley rats and untreated for 6 minutes. Animals were randomized into two groups (n = 10 for each group): polyethylene glycol-20k and control. Polyethylene glycol-20k (10% solution in saline, 10% estimated blood volume) and vehicle (saline) were administered at the beginning of cardiopulmonary resuscitation by continuous IV infusion. Resuscitation was attempted after 8 minutes of cardiopulmonary resuscitation. SETTING: University-Affiliated Research Laboratory. SUBJECTS: Sprague Dawley Rats. INTERVENTIONS: Polyethylene glycol-20k. MEASUREMENTS AND MAIN RESULTS: Buccal microcirculation was measured at baseline, 1, 3, and 6 hours after return of spontaneous circulation using a side-stream dark-field imaging device. Myocardial function was measured by echocardiography at baseline and every hour postresuscitation for 6 hours. The animals were then returned to their cage and observed for an additional 72 hours. Neurologic Deficit Scores were recorded at 24, 48, and 72 hours after resuscitation. Postresuscitation ejection fraction, cardiac output, and myocardial performance index were significantly improved in animals treated with polyethylene glycol-20k (p < 0.05). Perfused buccal vessel density and microcirculatory flow index values were significantly higher at all time points in the polyethylene glycol-20k group compared with the control group. Postresuscitation cerebral function and survival rate were also significantly improved in animals that received polyethylene glycol-20k. CONCLUSIONS: Administration of polyethylene glycol-20k following cardiopulmonary resuscitation improves postresuscitation myocardial and cerebral function, buccal microcirculation, and survival in a rat model of cardiopulmonary resuscitation.


Assuntos
Reanimação Cardiopulmonar/métodos , Polietilenoglicóis/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Fibrilação Ventricular/terapia , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Eletrocardiografia , Testes de Função Cardíaca , Masculino , Microcirculação/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Ratos Sprague-Dawley
6.
J Pharmacol Exp Ther ; 361(2): 334-340, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28275202

RESUMO

Hemorrhagic shock leads to cell and tissue swelling and no reflow from compressed capillaries. Cell impermeants, including polyethylene glycol-20,000 (PEG-20k), reverse ischemia-induced cell swelling, extend low-volume resuscitation (LVR) time after shock, and increase tolerance to the low-volume state. The purpose of this study was to explore the mechanisms of action of PEG-20k containing LVR solutions. We hypothesized that PEG-20k acts as both an oncotic agent and an impermeant in the microcirculation, which moves water out of the space and into the capillaries to affect peripheral capillary filling and enhanced perfusion during the low-volume state. Rats were hemorrhaged until arterial lactate reached 9-10 mM/liter. Then, saline-based LVR solutions containing various impermeant materials were administered (10% blood volume). The LVR times for these solutions were determined by measuring the amount of time required for plasma lactate to climb back to 9 to 10 mM after LVR administration (low-volume tolerance). Capillary blood flow was measured by colored microspheres, and blood volume was measured by fluorescein isothiocyanate-labeled albumin dilution. Gluconate (impermeant), albumin (colloid), and PEG-20k (hybrid) increased LVR time over saline by 4-, 3-, and 8-fold, respectively. The combination of impermeant + albumin produced a biologic effect that was similar to PEG-20k alone. Capillary blood flow and plasma volume were decreased after shock with saline LVR but increased with PEG-20k, relative to saline. These data are consistent with the hypothesis that PEG-20k may act by establishing multiple osmotic gradients in the microcirculation to drive cell-to-capillary water transfer during hypovolemic shock.


Assuntos
Polietilenoglicóis/farmacologia , Choque Hemorrágico/tratamento farmacológico , Albuminas/metabolismo , Animais , Capilares/efeitos dos fármacos , Capilares/metabolismo , Edema/tratamento farmacológico , Edema/metabolismo , Microcirculação/efeitos dos fármacos , Ratos , Ressuscitação/métodos , Choque Hemorrágico/metabolismo
7.
Ann Surg ; 263(3): 565-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25915911

RESUMO

OBJECTIVE: To determine the role of cell swelling in severe hemorrhagic shock and resuscitation injury. BACKGROUND: Circulatory shock induces the loss of energy-dependent volume control mechanisms. As water enters ischemic cells, they swell, die, and compress nearby vascular structures, which further aggravates ischemia by reducing local microcirculatory flow and oxygenation. Loading the interstitial space with cell impermeant molecules prevents water movement into the cell by passive biophysical osmotic effects, which prevents swelling injury and no-reflow. METHODS: Adult rats were hemorrhaged to a pressure of 30 to 35  mm Hg, held there until the plasma lactate reached 10  mM, and given a low-volume resuscitation (LVR) (10%-20% blood volume) with saline or various cell impermeants (sorbitol, raffinose, trehalose, gluconate, and polyethylene glycol-20k (PEG-20k). When lactate again reached 10  mM after LVR, full resuscitation was started with crystalloid and red cells. One hour after full resuscitation, the rats were euthanized. Capillary blood flow was measured by the colored microsphere technique. RESULTS: Impermeants prevented ischemia-induced cell swelling in liver tissue and dramatically improved LVR outcomes in shocked rats. Small cell impermeants and PEG-20k in LVR solutions increased tolerance to the low flow state by two and fivefold, respectively, normalized arterial pressure during LVR, and lowered plasma lactate after full resuscitation, relative to saline. This was accompanied by higher capillary blood flow with cell impermeants. CONCLUSIONS: Ischemia-induced lethal cell swelling during hemorrhagic shock is a key mediator of resuscitation injury, which can be prevented by cell impermeants in low-volume resuscitation solutions.


Assuntos
Edema/fisiopatologia , Hidratação/métodos , Ressuscitação/métodos , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia , Animais , Soluções Cristaloides , Modelos Animais de Doenças , Hemodinâmica , Soluções Isotônicas , Fígado/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/fisiologia , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/fisiologia
8.
Artif Organs ; 40(10): 999-1008, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27086771

RESUMO

Normothermic machine perfusion (NMP) has been introduced as a promising technology to preserve and possibly repair marginal liver grafts. The aim of this study was to compare the effect of temperature on the preservation of donation after cardiac death (DCD) liver grafts in an ex vivo perfusion model after NMP (38.5°C) and subnormothermic machine perfusion (SNMP, 21°C) with a control group preserved by cold storage (CS, 4°C). Fifteen porcine livers with 60 min of warm ischemia were preserved for 10 h by NMP, SNMP or CS (n = 5/group). After the preservation phase all livers were reperfused for 24 h in an isolated perfusion system with whole blood at 38.5°C to simulate transplantation. At the end of transplant simulation, the NMP group showed significantly lower hepatocellular enzyme level (AST: 277 ± 69 U/L; ALT: 22 ± 2 U/L; P < 0.03) compared to both SNMP (AST: 3243 ± 1048 U/L; ALT: 127 ± 70 U/L) and CS (AST: 3150 ± 1546 U/L; ALT: 185 ± 97 U/L). There was no significant difference between SNMP and CS. Bile production was significantly higher in the NMP group (219 ± 43 mL; P < 0.01) compared to both SNMP (49 ± 84 mL) and CS (12 ± 16 mL) with no significant difference between the latter two groups. Histologically, the NMP livers showed preserved cellular architecture compared to the SNMP and CS groups. NMP was able to recover DCD livers showing superior hepatocellular integrity, biliary function, and microcirculation compared to SNMP and CS. SNMP showed some significant benefit over CS, yet has not shown any advantage over NMP.


Assuntos
Fígado/fisiologia , Fígado/ultraestrutura , Preservação de Órgãos/métodos , Perfusão/métodos , Animais , Feminino , Fígado/enzimologia , Transplante de Fígado , Suínos , Temperatura , Coleta de Tecidos e Órgãos/métodos , Isquemia Quente/métodos
9.
Liver Transpl ; 20(8): 987-99, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24805852

RESUMO

The effects of normothermic machine perfusion (NMP) on the postreperfusion hemodynamics and extrahepatic biliary duct histology of donation after cardiac death (DCD) livers after transplantation have not been addressed thoroughly and represent the objective of this study. Ten livers (5 per group) with 60 minutes of warm ischemia were preserved via cold storage (CS) or sanguineous NMP for 10 hours, and then they were reperfused for 24 hours with whole blood in an isolated perfusion system to simulate transplantation. In our experiment, the arterial and portal vein flows were stable in the NMP group during the entire reperfusion simulation, whereas they decreased dramatically in the CS group after 16 hours of reperfusion (P < 0.05); these findings were consistent with severe parenchymal injury. Similarly, significant differences existed between the CS and NMP groups with respect to the release of hepatocellular enzymes, the volume of bile produced, and the levels of enzymes released into bile (P < 0.05). According to histology, CS livers presented with diffuse hepatocyte congestion, necrosis, intraparenchymal hemorrhaging, denudated biliary epithelium, and submucosal bile duct necrosis, whereas NMP livers showed very mild injury to the liver parenchyma and biliary architecture. Most importantly, Ki-67 staining in extrahepatic bile ducts showed biliary epithelial regeneration. In conclusion, our findings advance the knowledge of the postreperfusion events that characterize DCD livers and suggest NMP as a beneficial preservation modality that is able to improve biliary regeneration after a major ischemic event and may prevent the development of ischemic cholangiopathy in the setting of clinical transplantation.


Assuntos
Epitélio/patologia , Transplante de Fígado , Regeneração , Animais , Ductos Biliares/patologia , Morte , Feminino , Sobrevivência de Enxerto , Hemodinâmica , Hepatócitos/metabolismo , Antígeno Ki-67/metabolismo , Fígado/enzimologia , Fígado/patologia , Necrose , Preservação de Órgãos , Consumo de Oxigênio , Perfusão , Veia Porta/patologia , Suínos , Isquemia Quente
10.
Cryobiology ; 69(1): 34-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24836372

RESUMO

The objective of this study was to determine how expression and functionality of the cytoskeletal linker protein moesin is involved in hepatic hypothermic preservation injury. Mouse livers were cold stored in University of Wisconsin (UW) solution and reperfused on an isolated perfused liver (IPL) device for one hour. Human hepatocytes (HepG2) and human or murine sinusoidal endothelial cells (SECs) were cold stored and rewarmed to induce hypothermic preservation injury. The cells were transfected with: wild type moesin, an siRNA duplex specific for moesin, and the moesin mutants T558D and T558A. Tissue and cell moesin expression and its binding to actin were determined by Western blot. Liver IPL functional outcomes deteriorated proportional to the length of cold storage, which correlated with moesin disassociation from the actin cytoskeleton. Cell viability (LDH and WST-8) in the cell models progressively declined with increasing preservation time, which also correlated with moesin disassociation. Transfection of a moesin containing plasmid or an siRNA duplex specific for moesin into HepG2 cells resulted in increased and decreased moesin expression, respectively. Overexpression of moesin protected while moesin knock-down potentiated preservation injury in the HepG2 cell model. Hepatocytes expressing the T558A (inactive) and T558D (active) moesin binding mutants demonstrated significantly more and less preservation injury, respectively. Cold storage time dependently caused hepatocyte detachment from the matrix and cell death, which was prevented by the T558D active moesin mutation. In conclusion, moesin is causally involved in hypothermic liver cell preservation injury through control of its active binding molecular functionality.


Assuntos
Criopreservação/métodos , Hepatócitos/patologia , Fígado/lesões , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Animais , Linhagem Celular , Isquemia Fria , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Camundongos , Mutação , Preservação de Órgãos , Soluções para Preservação de Órgãos/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Reperfusão
11.
J Trauma Acute Care Surg ; 95(5): 755-761, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335954

RESUMO

BACKGROUND: No reflow in capillaries (no reflow) is the lack of tissue perfusion that occurs once central hemodynamics are restored. This prevents oxygen transfer and debt repayment to vital tissues after shock resuscitation. Since metabolic swelling of cells and tissues can cause no reflow, it is a target for study in shock. We hypothesize no reflow secondary to metabolic cell swelling causes the problem not addressed by current strategies that increase central hemodynamics alone. METHODS: Anesthetized swine were bled until plasma lactate reached 7.5 mM to 9 mM. Intravenous low volume resuscitation solutions were administered (6.8 mL/kg over 5 minutes) consisting of; (1) lactated Ringer (LR), (2) autologous whole blood, (3) high-dose vitamin C (200 mg/kg), or (4) 10% PEG-20k, a polymer-based cell impermeant that corrects metabolic cell swelling. Outcomes were macrohemodynamics (MAP), plasma lactate, capillary flow in the gut and tongue mucosa using orthogonal polarization spectral imaging (OPSI), and survival to 4 hours. RESULTS: All PEG-20k resuscitated swine survived 240 minutes with MAP above 60 mm Hg compared with 50% and 0% of the whole blood and LR groups, respectively. The vitamin C group died at just over 2 hours with MAPs below 40 and high lactate. The LR swine only survived 30 minutes and died with low MAP and high lactate. Capillary flow positively correlated ( p < 0.05) with survival and MAP. Sublingual OPSI correlated with intestinal OPSI and OPSI was validated with a histological technique. DISCUSSION: Targeting micro-hemodynamics in resuscitation may be more important than macrohemodynamics. Fixing both is optimal. Sublingual OPSI is clinically achievable to assess micro-hemodynamic status. Targeting tissue cell swelling that occurs during ATP depletion in shock using optimized osmotically active cell impermeants in crystalloid low volume resuscitation solutions improves perfusion in shocked tissues, which leverages a primary mechanism of injury.


Assuntos
Choque Hemorrágico , Animais , Suínos , Choque Hemorrágico/tratamento farmacológico , Microcirculação , Soluções Cristaloides/uso terapêutico , Hemodinâmica , Lactato de Ringer , Edema , Perfusão , Lactatos , Ácido Ascórbico/uso terapêutico , Ressuscitação/métodos , Soluções Isotônicas/farmacologia , Soluções Isotônicas/uso terapêutico
12.
Patient Saf Surg ; 17(1): 10, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101230

RESUMO

BACKGROUND: Retained surgical sharps (RSS) is a "never event" that is preventable but may still occur despite of correct count and negative X-ray. This study assesses the feasibility of a novel device ("Melzi Sharps Finder®" or MSF) in effective detection of RSS. METHODS: The first study consisted of determination of the presence of RSS or identification of RSS in an ex-vivo model (a container with hay in a laparoscopic trainer box). The second study consisted of determining presence of RSS in an in-vivo model (laparoscopy in live adult Yorkshire pigs) with 3 groups: C-arm, C-arm with MSF and MSF. The third study used similar apparatus though with laparotomy and included 2 groups: manual search and MSF. RESULTS: In the first study, the MSF group had a higher rate of identification of a needle and decreased time to locate a needle versus control (98.1% vs. 22.0%, p < 0.001; 1.64 min ± 1.12vs. 3.34 min ± 1.28, p < 0.001). It also had increased accuracy of determining the presence of a needle and decreased time to reach this decision (100% vs. 58.8%, p < 0.001; 1.69 min ± 1.43 vs. 4.89 min ± 0.63, p < 0.001). In-the second study, the accuracy of determining the presence of a needle and time to reach this decision were comparable in each group (88.9% vs. 100% vs. 84.5%, p < 0.49; 2.2 min ± 2.2 vs. 2.7 min ± 2.1vs. 2.8 min ± 1.7, p = 0.68). In the third study, MSF group had higher accuracy in determining the presence of a needle and decreased time to reach this decision than the control (97.0% vs. 46.7%, p < 0.001; 2.0 min ± 1.5 vs. 3.9 min ± 1.4; p < 0.001). Multivariable analysis showed that MSF use was independently associated with an accurate determination of the presence of a needle (OR 12.1, p < 0.001). CONCLUSIONS: The use of MSF in this study's RSS models facilitated the determination of presence and localization of RSS as shown by the increased rate of identification of a needle, decreased time to identification and higher accuracy in determining the presence of a needle. This device may be used in conjunction with radiography as it gives live visual and auditory feedback for users during the search for RSS.

13.
Cryobiology ; 65(1): 60-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22554620

RESUMO

Renal epithelial cells from donor kidneys are susceptible to hypothermic preservation injury, which is attenuated when they over express the cytoskeletal linker protein ezrin. This study was designed to characterize the mechanisms of this protection. Renal epithelial cell lines were created from LLC-PK1 cells, which expressed mutant forms of ezrin with site directed alterations in membrane binding functionality. The study used cells expressing wild type ezrin, T567A, and T567D ezrin point mutants. The A and D mutants have constitutively inactive and active membrane binding conformations, respectively. Cells were cold stored (4 °C) for 6-24 h and reperfused for 1h to simulate transplant preservation injury. Preservation injury was assessed by mitochondrial activity (WST-1) and LDH release. Cells expressing the active ezrin mutant (T567D) showed significantly less preservation injury compared to wild type or the inactive mutant (T567A), while ezrin-specific siRNA knockdown and the inactive mutant potentiated preservation injury. Ezrin was extracted and identified from purified mitochondria. Furthermore, isolated mitochondria specifically bound anti-ezrin antibodies, which were reversed with the addition of exogenous recombinant ezrin. Recombinant wild type ezrin significantly reduced the sensitivity of the mitochondrial permeability transition pore (mPTP) to calcium, suggesting ezrin may modify mitochondrial function. In conclusion, the cytoskeletal linker protein ezrin plays a significant role in hypothermic preservation injury in renal epithelia. The mechanisms appear dependent on the molecule's open configuration (traditional linker functionality) and possibly a novel mitochondrial specific role, which may include modulation of mPTP function or calcium sensitivity.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Células Epiteliais/fisiologia , Hipotermia Induzida/métodos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Permeabilidade da Membrana Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Temperatura Baixa , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Células LLC-PK1 , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Preservação de Órgãos/métodos , Mutação Puntual , Suínos
14.
Biomed Pharmacother ; 152: 113293, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714513

RESUMO

BACKGROUND: Traditionally, vasopressors and crystalloids have been used to stabilize brain dead donors; however, the use of crystalloid is fraught with complications. This study aimed to investigate the effectiveness of a newly developed impermeant solution, polyethylene glycol-20k IV solution (PEG-20k) for resuscitation and support of brain dead organ donors. METHODS: Brain death was induced in adult beagle dogs and a set volume of PEG-20k or crystalloid solution was given thereafter. The animals were then resuscitated over 16 h with vasopressors and crystalloid as necessary to maintain mean arterial pressure of 80-100 mmHg. The kidneys were procured and cold-stored for 24 h, after which they were analyzed using the isolated perfused kidney model. RESULTS: The study group required significantly less crystalloid volume and vasopressors while having less urine output and requiring less potassium supplementation than the control group. Though the two groups' mean arterial pressure and lactate levels were comparable, the study group's kidneys showed less preservation injury after short-term reperfusion indexed by decreased lactate dehydrogenase release and higher creatinine clearance than the control group. CONCLUSIONS: The use of polyethylene glycol-20k IV solution for resuscitating brain dead donors decreases cell swelling and improves intravascular volume, thereby improving end organ oxygen delivery before procurement and so preventing ischemia-reperfusion injury after transplantation.


Assuntos
Morte Encefálica , Polietilenoglicóis , Animais , Soluções Cristaloides , Modelos Animais de Doenças , Cães , Humanos , Polietilenoglicóis/farmacologia , Doadores de Tecidos
15.
Surgery ; 171(5): 1263-1272, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34774290

RESUMO

BACKGROUND: Per-oral endoscopic myotomy is an alternative to pneumatic dilation and laparoscopic Heller myotomy to treat lower esophageal sphincter diseases. Laparoscopic Heller myotomy and per-oral endoscopic myotomy perioperative outcomes data come from relatively small retrospective series and 1 randomized trial. We aimed to estimate the number of inpatient procedures performed in the United States and compare perioperative outcomes and costs of laparoscopic Heller myotomy and per-oral endoscopic myotomy using a nationally representative database. METHODS: Cross-sectional retrospective analysis of hospital admissions for laparoscopic Heller myotomy or per-oral endoscopic myotomy from October 2015 through December 2018 in the National Inpatient Sample. Patient and hospital characteristics, concurrent antireflux procedures, perioperative adverse events (any adverse event and those associated with extended length of stay ≥3 days), mortality, length of stay, and costs were compared. Logistic regression evaluated factors independently associated with adverse events. RESULTS: An estimated 11,270 patients had laparoscopic Heller myotomy (n = 9,555) or per-oral endoscopic myotomy (n = 1,715) without significant differences in demographics and comorbidities. A concurrent anti-reflux procedure was more frequent with laparoscopic Heller myotomy (72.8% vs 15.5%, P < .001). Overall adverse event rate was higher with per-oral endoscopic myotomy (13.3% vs 24.8%, P < .001), and mortality was similar. Per-oral endoscopic myotomy had higher rates of adverse events associated with extended length of stay (9.3% vs 16.6%, P < .001), infectious adverse events (3.5% vs 8.2%, P < .001), gastrointestinal bleeding (3.4% vs 5.8%, P = .04), accidental injuries (3% vs 5.5%, P = .03), and thoracic adverse events (4.5% vs 9%, P < .01). Rates of adverse events of both procedures remained similar during the years of the study. Per-oral endoscopic myotomy was independently associated with adverse events. Length of stay (laparoscopic Heller myotomy: 3.2 ± 0.1 vs per-oral endoscopic myotomy: 3.7 ± 0.3 days, P = .17) and costs (laparoscopic Heller myotomy: $15,471 ± 406 vs per-oral endoscopic myotomy: $15,146 ± 1,308, P = .82) were similar. CONCLUSION: In this national database review, laparoscopic Heller myotomy had a lower rate of perioperative adverse events at similar length of stay and costs than per-oral endoscopic myotomy. Laparoscopic Heller myotomy remains a safer procedure than per-oral endoscopic myotomy for a myotomy of the distal esophagus and lower esophageal sphincter in the United States.


Assuntos
Acalasia Esofágica , Miotomia de Heller , Laparoscopia , Miotomia , Estudos Transversais , Acalasia Esofágica/cirurgia , Miotomia de Heller/efeitos adversos , Humanos , Pacientes Internados , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Estudos Retrospectivos , Resultado do Tratamento , Estados Unidos/epidemiologia
16.
Animal Model Exp Med ; 4(3): 283-296, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34557655

RESUMO

Heart transplantation is a lifesaving procedure, which is limited by the availability of donor hearts. Using hearts from donors after circulatory death, which have sustained global ischemia, requires thorough studies on reliable and reproducible models that developing researchers may not have mastered. By combining the most recent literature and our recommendations based on observations and trials and errors, the methods here detail a sound in vivo heterotopic heart transplantation model for rats in which protective interventions on the ischemic heart can be studied, and thus allowing the scientific community to advance organ preservation research. Knowledge gathered from reproducible animal models allow for successful translation to clinical studies.


Assuntos
Transplante de Coração , Traumatismo por Reperfusão , Animais , Transplante de Coração/métodos , Humanos , Isquemia , Camundongos , Ratos , Doadores de Tecidos , Isquemia Quente/efeitos adversos
17.
PLoS One ; 16(7): e0246978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234356

RESUMO

Donation after circulatory death (DCD) has expanded the donor pool for liver transplantation. However, ischemic cholangiopathy (IC) after DCD liver transplantation causes inferior outcomes. The molecular mechanisms of IC are currently unknown but may depend on ischemia-induced genetic reprograming of the biliary epithelium to mesenchymal-like cells. The main objective of this study was to determine if cholangiocytes undergo epithelial to mesenchymal transition (EMT) after exposure to DCD conditions and if this causally contributes to the phenotype of IC. Human cholangiocyte cultures were exposed to periods of warm and cold ischemia to mimic DCD liver donation. EMT was tested by assays of cell migration, cell morphology, and differential gene expression. Transplantation of syngeneic rat livers recovered under DCD conditions were evaluated for EMT changes by immunohistochemistry. Human cholangiocytes exposed to DCD conditions displayed migratory behavior and gene expression patterns consistent with EMT. E-cadherin and CK-7 expressions fell while N-cadherin, vimentin, TGFß, and SNAIL rose, starting 24 hours and peaking 1-3 weeks after exposure. Cholangiocyte morphology changed from cuboidal (epithelial) before to spindle shaped (mesenchymal) a week after ischemia. These changes were blocked by pretreating cells with the Transforming Growth Factor beta (TGFß) receptor antagonist Galunisertib (1 µM). Finally, rats with liver isografts cold stored for 20 hours in UW solution and exposed to warm ischemia (30 minutes) at recovery had elevated plasma bilirubin 1 week after transplantation and the liver tissue showed immunohistochemical evidence of early cholangiocyte EMT. Our findings show EMT occurs after exposure of human cholangiocytes to DCD conditions, which may be initiated by upstream signaling from autocrine derived TGFß to cause mesenchymal specific morphological and migratory changes.


Assuntos
Transição Epitelial-Mesenquimal , Isquemia/patologia , Transplante de Fígado/efeitos adversos , Animais , Humanos , Masculino , Ratos
18.
J Am Heart Assoc ; 10(9): e019177, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33884887

RESUMO

Background To investigate the therapeutic potential of combined therapy with polyethylene glycol-20k (PEG-20k) and MCC950 on post-resuscitation myocardial function in a rat model of cardiac arrest. Methods and Results Thirty rats were randomized into 5 groups: Sham, Control, PEG-20k, MCC950, PEG-20k+ MCC950. Except for sham, animals were subjected to 6 minutes of ventricular fibrillation followed by 8 minutes cardiopulmonary resuscitation. Two milliliters PEG-20k was administered by intravenous injection coincident with the start of cardiopulmonary resuscitation; MCC950 (10 mg/kg), a highly selective NLRP3 inflammasome inhibitor, was delivered immediately after restoration of spontaneous circulation. Myocardial function, sublingual microcirculation, mitochondrial function, plasma cardiac troponin I, and interleukin-1ß, expression of proteins in SIRT1 (sirtuin 1)/PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and NLRP3 (the NOD-like receptor family protein 3) inflammasome pathways were evaluated. Following cardiopulmonary resuscitation, myocardial function was compromised with a significantly decreased cardiac output, ejection fraction, and increased myocardial performance index, cardiac troponin I. Sublingual microcirculation was disturbed with impaired perfused vessel density and microvascular flow index. Cardiac arrest reduced mitochondrial routine respiration, Complex I-linked respiration, respiratory control rates and oxidative phosphorylation coupling efficiency. PEG-20k or MCC950 alone restored mitochondrial respiratory function, restituted sublingual microcirculation, and preserved myocardial function, whereas a combination of PEG-20k and MCC950 further improved these aspects. PEG-20k restored the expression of SIRT1 and PGC-1α, and blunted activation of NLRP3 inflammasomes. MCC950 suppressed expression of cleaved-caspase-1/pro-caspase-1, ASC (apoptosis-associated speck-like protein), GSDMD [gasdermin d], and interleukin-1ß. Conclusions Combined therapy with PEG-20k and MCC950 is superior to either therapy alone for preserving post-resuscitated myocardial function, restituting sublingual microcirculation at restoration of spontaneous circulation at 6 hours. The responsible mechanisms involve upregulated expression of SIRT1/PGC1-α in tandem with inhibition of NLRP3 inflammasomes.


Assuntos
Reanimação Cardiopulmonar/métodos , Furanos/farmacologia , Parada Cardíaca/terapia , Indenos/farmacologia , Inflamassomos/metabolismo , Contração Miocárdica/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Volume Sistólico/fisiologia , Sulfonamidas/farmacologia , Animais , Modelos Animais de Doenças , Parada Cardíaca/complicações , Parada Cardíaca/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Volume Sistólico/efeitos dos fármacos , Fibrilação Ventricular/complicações
19.
Biomed Pharmacother ; 139: 111646, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33940509

RESUMO

Out-of-hospital cardiac arrest (CA) is a leading cause of death in the United States. Severe post-resuscitation cerebral dysfunction is a primary cause of poor outcome. Therefore, we investigate the effects of polyethylene glycol-20k (PEG-20k), a cell impermeant, on post-resuscitation cerebral function. Thirty-two male Sprague-Dawley rats were randomized into four groups: 1) Control; 2) PEG-20k; 3) Sham control; 4) Sham with PEG-20k. To investigate blood brain barrier (BBB) permeability, ten additional rats were randomized into two groups: 1) CPR+Evans Blue (EB); 2) Sham+EB. Ventricular fibrillation was induced and untreated for 8 min, followed by 8 min of CPR, and resuscitation was attempted by defibrillation. Cerebral microcirculation was visualized at baseline, 2, 4 and 6 h after return of spontaneous circulation (ROSC). Brain edema was assessed by comparing wet-to-dry weight ratios after 6 h. S-100ß, NSE and EB concentrations were analyzed to determine BBB permeability damage. For results, Post-resuscitation cerebral microcirculation was impaired compared to baseline and sham control (p < 0.05). However, dysfunction was reduced in animals treated with PEG-20k compared to control (p < 0.05). Post-resuscitation cerebral edema as measured by wet-to-dry weight ratio was lower in PEG-20k compared to control (3.23 ±â€¯0.5 vs. 3.36 ±â€¯0.4, p < 0.05). CA and CPR increased BBB permeability and damaged neuronal cell with associated elevation of S-100ß sand NSE serum levels. PEG-20k administered during CPR improved cerebral microcirculation and reducing brain edema and injury.


Assuntos
Encefalopatias/prevenção & controle , Reanimação Cardiopulmonar/efeitos adversos , Parada Cardíaca/terapia , Polietilenoglicóis/farmacologia , Animais , Barreira Hematoencefálica , Encefalopatias/patologia , Edema Encefálico/prevenção & controle , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Cardioversão Elétrica , Eletrocardiografia , Parada Cardíaca/complicações , Masculino , Microcirculação/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fibrilação Ventricular
20.
Int Urol Nephrol ; 53(9): 1819-1825, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34212270

RESUMO

PURPOSE: Dynamic elasticity is a biomechanical property of the bladder in which muscle compliance can be acutely adjusted through passive stretches and reversed with active contractions. The aim of this study was to determine if manipulating dynamic elasticity using external compression could be used as a novel method to acutely increase bladder capacity and reduce bladder pressure in a porcine model. METHODS: Ex vivo experiment: bladders underwent continuous or pulsatile compression after establishing a reference pressure at bladder capacity. Bladders were then filled back to the reference pressure to determine if capacity could be acutely increased. In-vivo experiments: bladders underwent five cycles of pulsatile external compression with ultrasound confirmation. Pre and post-compression pressures were measured, and pressure was measured again 10 min post-compression. RESULTS: Ex vivo experiment: pulsatile compression demonstrated increased bladder capacity by 16% (p = 0.01). Continuous compression demonstrated increased capacity by 9% (p < 0.03). Comparison of pulsatile to continuous compression showed that the pulsatile method was superior (p = 0.03). In-vivo experiments: pulsatile external compression reduced bladder pressure by 19% (p < 0.00001) with a return to baseline 10 min post-compression. CONCLUSIONS: These results suggest that regulation of bladder dynamic elasticity achieved with external compression can acutely decrease bladder pressure and increase bladder capacity. Pulsatile compression was found to be more effective as compared to continuous compression. These results highlight the clinical potential for use of non-invasive pulsatile compression as a therapeutic technique to increase bladder capacity, decrease bladder pressure, and reduce the symptoms of urinary urgency.


Assuntos
Elasticidade , Terapia por Exercício , Bexiga Urinária/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Técnicas In Vitro , Masculino , Modelos Animais , Pressão , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa