Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 23(1): 147, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899304

RESUMO

BACKGROUND: Pregnancy increases a woman's risk of severe dengue. To the best of our knowledge, the moderation effect of the dengue serotype among pregnant women has not been studied in Mexico. This study explores how pregnancy interacted with the dengue serotype from 2012 to 2020 in Mexico. METHOD: Information from 2469 notifying health units in Mexican municipalities was used for this cross-sectional analysis. Multiple logistic regression with interaction effects was chosen as the final model and sensitivity analysis was done to assess potential exposure misclassification of pregnancy status. RESULTS: Pregnant women were found to have higher odds of severe dengue [1.50 (95% CI 1.41, 1.59)]. The odds of dengue severity varied for pregnant women with DENV-1 [1.45, (95% CI 1.21, 1.74)], DENV-2 [1.33, (95% CI 1.18, 1.53)] and DENV-4 [3.78, (95% CI 1.14, 12.59)]. While the odds of severe dengue were generally higher for pregnant women compared with non-pregnant women with DENV-1 and DENV-2, the odds of disease severity were much higher for those infected with the DENV-4 serotype. CONCLUSION: The effect of pregnancy on severe dengue is moderated by the dengue serotype. Future studies on genetic diversification may potentially elucidate this serotype-specific effect among pregnant women in Mexico.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Humanos , Feminino , Gravidez , Sorogrupo , Vírus da Dengue/genética , México , Estudos Transversais , Sorotipagem
2.
BMC Womens Health ; 22(1): 205, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655261

RESUMO

BACKGROUND: In developing nations like India, fertility and mortality have decreased, and diseases related to lifestyle have become more common. Females in India are more prone to being overweight and obese than their male counterparts, more specifically in affluent families than the poor ones. Understanding the overweight and obesity trend may help develop feasible public health interventions to reduce the burden of obesity and associated adverse health outcomes. METHODS: The study utilizes the fourth round of the National Family Health Survey (NFHS-4), 2015-16. Descriptive statistics, bivariate and multivariate analysis was used to check the significant relationship between overweight and obesity, and other background characteristics. Income-related inequality in overweight and obesity among women was quantified by the concentration index and the concentration curve. Further, Wagstaff decomposition analysis was done to decompose the concentration index, into the contributions of each factor to the income-related inequalities. RESULTS: Overweight & obesity among women had a significant positive association with their age and educational level. The odds of overweight and obesity were 57% more likely among women who ever had any caesarean births than those who did not [AOR: 1.57; CI: 1.53-1.62]. The likelihood of overweight and obesity was 4.31 times more likely among women who belonged to richest [AOR: 5.84; CI: 5.61-6.08] wealth quintile, than those who belonged to poor wealth quintile. Women who ever terminated the pregnancy had 20% higher risk of overweight and obesity than those who did not [AOR: 1.20; CI: 1.17-1.22]. The concentration of overweight and obesity among women was mostly in rich households of all the Indian states and union territories. Among the geographical regions of India, the highest inequality was witnessed in Eastern India (0.41), followed by Central India (0.36). CONCLUSION: The study results also reveal a huge proportion of women belonging to the BMI categories of non-normal, which is a concern and can increase the risks of developing non-communicable diseases. Hence, the study concludes and recommends an urgent need of interventions catering to urban women belonging to higher socio-economic status which can reduce the risks of health consequences due to overweight and obesity. Development nutrition-specific as well as sensitive interventions can be done for mobilization of local resources that addresses the multiple issues under which a woman is overweight or obese.


Assuntos
Obesidade , Sobrepeso , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Obesidade/epidemiologia , Sobrepeso/epidemiologia , Gravidez , Prevalência , Classe Social
3.
Int J Biometeorol ; 65(2): 205-222, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33034718

RESUMO

The present study aims to examine the changes in air quality during different phases of the COVID-19 pandemic, including the lockdown (LD1-4) and unlock period (UL1-2) (post-lockdown) as compared to pre-lockdown (PL1-3) and to establish the relationships of the environmental and demographic variables with COVID-19 cases in the state of Maharashtra, the worst-hit state in India. Atmospheric pollutants such as PM2.5, PM10, NOx, and CO were substantially reduced during the lockdown and unlock phases with the greatest reduction in cities having larger traffic volumes. Compared with the immediate pre-lockdown period (PL3), the averaged PM2.5 and PM10 reduced by up to 51% and 47% respectively during the lockdown periods, which resulted in 'satisfactory' level of air quality index (AQI) as a result of reduced vehicular traffic and industrial closing. These parameters continued to reduce as much as 80% during the unlock periods due to the additive impact of weather (rainfall and temperature) combined with the lockdown conditions. Kendall's correlation matrix showed a significant negative correlation between temperature and air pollutants (r= - 0.35 to - 057). Conversely, SO2 and O3 did not improve, and in some cases, they increased during the lockdown and unlocking. COVID-19 spreading incidences were strongly and positively correlated with temperature (r < 0.62) and dew point (r < 0.73). Thus, this indicates that the increase in temperature and dew point cannot weaken the transmission of this virus. The number of COVID-19 cases relative to air pollutants was negatively correlated (r = - 0.33 to - 0.74), which may be a mere coincidence as a result of lockdown. However, based on pre-lockdown air quality data and demographic factors, it was found that particulate matter (PM2.5 and PM10) and population density are closely linked with higher morbidity and mortality although a more in-depth research is required in this direction to validate this finding. The onset of COVID-19 has allowed us to determine that 'immediate' changes in air quality within densely populated/industrialized areas can improve livelihood based on pollution mitigation. These findings could be used by policymakers to set new benchmarks for air pollution that would improve the quality of life for major sectors of the World's population. COVID-19 has shown us that we can make changes when necessary, and findings may pave the way for future research to inform policy on the tough choices we will have to make between quality of life and survival. Also, our results will enrich the ongoing discussion on the role of environmental factors on the transmission of COVID-19 and will help to take necessary steps for its control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Índia , Pandemias , Material Particulado/análise , Qualidade de Vida , SARS-CoV-2
4.
Neurosurgery ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356151

RESUMO

BACKGROUND AND OBJECTIVES: Recent advances in flow diverter (FD) therapy for intracranial aneurysms have highlighted the need to evaluate risk factors for in-stent stenosis (ISS), a potentially serious complication. This meta-analysis aims to identify risk factors associated with an increased risk of ISS after FD treatment. METHODS: PubMed, Web of Science, Embase, and SCOPUS databases were systematically searched for studies reporting ISS rates and risk factors after FD therapy for intracranial aneurysms. Odds ratios were calculated using random-effects models to assess potential risk factors associated with ISS. RESULTS: Ten studies involving 2350 patients with 2441 aneurysms were included. Younger age (P = .006) and male sex (P = .003) were associated with higher ISS risk. Smoking also increased the risk (P = .02). Aneurysm location in the posterior circulation (P < .00001) and fusiform morphology (P < .00001) were significant risk factors for ISS, as were ruptured aneurysms (P = .05). Hypertension, hyperlipidemia, diabetes, allergies, and alcohol abuse, as well as aneurysm size, neck width, and parent artery diameter, did not affect ISS risk. Procedural factors like balloon angioplasty, multiple FDs, or FD/coil combinations were not significantly associated with ISS. CONCLUSION: This meta-analysis identified both nonmodifiable (younger age, male sex) and modifiable (smoking) patient factors, as well as high-risk aneurysm characteristics (posterior circulation, fusiform, ruptured), associated with an increased risk of ISS after FD treatment. These findings highlight the importance of tailored monitoring and management approaches for optimizing outcomes in FD therapy.

5.
Int Health ; 13(5): 410-420, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34091670

RESUMO

As the outbreak of coronavirus disease 2019 (COVID-19) is rapidly spreading in different parts of India, a reliable forecast for the cumulative confirmed cases and the number of deaths can be helpful for policymakers in making the decisions for utilizing available resources in the country. Recently, various mathematical models have been used to predict the outbreak of COVID-19 worldwide and also in India. In this article we use exponential, logistic, Gompertz growth and autoregressive integrated moving average (ARIMA) models to predict the spread of COVID-19 in India after the announcement of various unlock phases. The mean absolute percentage error and root mean square error comparative measures were used to check the goodness-of-fit of the growth models and Akaike information criterion for ARIMA model selection. Using COVID-19 pandemic data up to 20 December 2020 from India and its five most affected states (Maharashtra, Karnataka, Andhra Pradesh, Tamil Nadu and Kerala), we report 15-days-ahead forecasts for cumulative confirmed cases and the number of deaths. Based on available data, we found that the ARIMA model is the best-fitting model for COVID-19 cases in India and its most affected states.


Assuntos
COVID-19 , Pandemias , Surtos de Doenças , Humanos , Índia/epidemiologia , Modelos Estatísticos , SARS-CoV-2
6.
Pathogens ; 10(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34451467

RESUMO

Currently, there is a massive debate on whether meteorological and air quality parameters play a crucial role in the transmission of COVID-19 across the globe. With this background, this study aims to evaluate the impact of air pollutants (PM2.5, PM10, CO, NO, NO2, and O3) and meteorological parameters (temperature, humidity, wind speed, and rainfall) on the spread and mortality due to the COVID-19 outbreak in Delhi from 14 Mar 2020 to 3 May 2021. The Spearman's rank correlation method employed on secondary data shows a significant correlation between the COVID-19 incidences and the PM2.5, PM10, CO, NO, NO2, and O3 concentrations. Amongst the four meteorological parameters, temperature is strongly correlated with COVID-19 infections and deaths during the three phases, i.e., pre-lockdown (14 March 2020 to 24 March 2020) (r = 0.79), lockdown (25 March 2020 to 31 May 2020) (r = 0.87), and unlock (1 June 2020 to 3 May 2021) (r = -0.75), explaining the variability of about 20-30% in the lockdown period and 18-19% in the unlock period. NO2 explained the maximum variability of 10% and 7% in the total confirmed cases and deaths among the air pollutants, respectively. A generalized linear model could explain 80% and 71% of the variability in confirmed cases and deaths during the lockdown and 82% and 81% variability in the unlock phase, respectively. These findings suggest that these factors may contribute to the transmission of the COVID-19 and its associated deaths. The study results would enhance the ongoing research related to the influence of environmental factors. They would be helpful for policymakers in managing the outbreak of COVID-19 in Delhi, India.

7.
Behav Sci (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34821609

RESUMO

As the world tries to cope with the devastating effects of the COVID-19 pandemic and emerging variants of the virus, COVID-19 vaccination has become an even more critical tool toward normalcy. The effectiveness of the vaccination program and specifically vaccine uptake and coverage, however, is a function of an individual's knowledge and individual opinion about the disease and available vaccines. This study investigated the knowledge, attitudes, and resulting community practice(s) associated with the new COVID-19 variants and vaccines in Bangladesh, Colombia, India, Malaysia, Zimbabwe, and the USA. A cross-sectional web-based Knowledge, Attitudes, and Practices (KAP) survey was administered to respondents living in six different countries using a structured and multi-item questionnaire. Survey questions were translated into English, Spanish, and Malay to accommodate the local language in each country. Associations between KAP and a range of explanatory variables were assessed using univariate and multiple logistic regression. A total of 781 responses were included in the final analysis. The Knowledge score mean was 24 (out of 46), Attitude score 28.9 (out of 55), and Practice score 7.3 (out of 11). Almost 65% of the respondents reported being knowledgeable about COVID-19 variants and vaccination, 55% reported a positive attitude toward available COVID-19 vaccines, and 85% reported engaging in practices that supported COVID-19 vaccination. From the multiple logistic models, we found post-graduate education (AOR = 1.83, 95% CI: 1.23-2.74) and an age range 45-54 years (AOR = 5.81, 95% CI: 2.30-14.69) to be significantly associated with reported COVID-19 knowledge. In addition, positive Attitude scores were associated with respondents living in Zimbabwe (AOR = 4.49, 95% CI: 2.04-9.90) and positive Practice scores were found to be associated with people from India (AOR = 3.68, 95% CI: 1.15-11.74) and high school education (AOR = 2.16, 95% CI: 1.07-4.38). This study contributes to the identification of socio-demographic factors associated with poor knowledge, attitudes, and practices relating to COVID-19 variants and vaccines. It presents an opportunity for collaboration with diverse communities to address COVID-19 misinformation and common sources of vaccine hesitancy (i.e., knowledge, attitudes, and practices).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa