Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Drug Dev Ind Pharm ; 49(5): 377-391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37216496

RESUMO

OBJECTIVE: The present study aimed to identify a safe and effective non-oncology drug cocktail as an alternative to toxic chemotherapeutics for hepatocellular carcinoma (HCC) treatment. The assessment of cytotoxicity of cocktail (as co-adjuvant) in combination with chemotherapeutic docetaxel (DTX) is also aimed. Further, we aimed to develop an oral solid self-emulsifying drug delivery system (S-SEDDS) for the simultaneous delivery of identified drugs. SIGNIFICANCE: The identified non-oncology drug cocktail could overcome the shortage of anticancer therapeutics and help to reduce cancer-related mortality. Moreover, the developed S-SEDDS could be an ideal system for concurrent oral delivery of non-oncology drug combinations. METHODS: The non-oncology drugs (alone and in combinations) were screened in vitro for anticancer effect (against HepG2 cells) using (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; MTT) dye assay, and cell cycle arresting and apoptotic behaviors using the fluorescence-activated cell sorting (FACS) technique. The S-SEDDS is composed of drugs such as ketoconazole (KCZ), disulfiram (DSR), tadalafil (TLF), and excipients like span-80, tween-80, soybean oil, Leciva S-95, Poloxamer F108 (PF-108), and Neusilin® US2 (adsorbent carrier), which was developed and characterized. RESULTS: The cocktail composed of KCZ, DSR, and TLF has showed substantial cytotoxicity (at the lowest concentration of 3.3 pmol), HepG2 cell arrest at G0/G1 and S phases, and substantial cell death via apoptosis. The DTX inclusion into this cocktail has further resulted in increased cytotoxicity, cell arrest at the G2/M phase, and cell necrosis. The optimized blank liquid SEDDS that remains transparent without phase separation for more than 6 months is used for the preparation of drug-loaded liquid SEDDS (DL-SEDDS). The optimized DL-SEDDS with low viscosity, good dispersibility, considerable drug retention upon dilution, and smaller particle size is further converted into drug-loaded solid SEDDS (DS-SEDDS). The final DS-SEDDS demonstrated acceptable flowability and compression characteristics, significant drug retention (more than 93%), particle size in nano range (less than 500 nm), and nearly spherical morphology following dilutions. The DS-SEDDS showed substantially increased cytotoxicity and Caco-2 cell permeability than plain drugs. Furthermore, DS-SEDDS containing only non-oncology drugs caused lower in vivo toxicity (only 6% body weight loss) than DS-SEDDS containing non-oncology drugs with DTX (about 10% weight loss). CONCLUSION: The current study revealed a non-oncology drug combination effective against HCC. Further, it is concluded that the developed S-SEDDS containing non-oncology drug combination alone and in combination with DTX could be a promising alternative to toxic chemotherapeutics for the effective oral treatment of hepatic cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Emulsões , Células CACO-2 , Reposicionamento de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Excipientes , Docetaxel/farmacologia , Administração Oral , Solubilidade
2.
AAPS PharmSciTech ; 24(5): 106, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085596

RESUMO

Simvastatin (SMV) is noticed as a repurposed candidate to be effective against breast cancer (BC). However, poor solubility, dose-limiting toxicities, and side effects are critical hurdles in its use against BC. The above drawbacks necessitate the site-specific (localized) delivery of SMV via suitable nanocarriers. Therefore, the present study intended to develop SMV nanostructured lipid carrier (NLC)-based gel using carbopol-934 as a gelling agent to achieve local delivery and improve patient compliance while combating BC. The SMV NLCs were fabricated by melt-emulsification ultrasonication technique using stearic acid as solid lipid, olive oil (OO) as liquid lipid, tween 20 as a surfactant, and PEG-200 as a co-surfactant, and optimized by Box-Behnken design. The optimized SMV-loaded NLCs displayed % entrapment efficiency of 91.66 ± 5.2% and particle size of 182 ± 11.9 nm. The pH of NLC-based gels prepared using a 2.0% w/v of carbopol-934 was found in the range of 5.3-5.6 while the viscosity was in the range of 5.1-6.6 Pa.S. Besides, NLC-based gels exhibited higher and controlled SMV release (71-76%) at pH 6.8 and (78-84%) at pH 5.5 after 48 h than SMV conventional gel (37%) at both pH 6.8 and 5.5 after 48 h. The ex vivo permeation of SMV from NLC-based gel was 3.8 to 4.5 times more than conventional gel. Notably, SMV-loaded NLCs displayed ameliorated cytotoxicity than plain SMV against MCF-7 and MDA-MB-231 BC cells. No substantial difference was noticed in the cytotoxicity of NLC-based gels and pure SMV against both cell lines. The SMV NLC-based gel exhibited the absence of skin irritation in vivo in the mice following topical application. In addition, the histopathological study revealed no alteration in the mice skin anatomy. Furthermore, the SMV-loaded NLCs and NLC-based gels were stable for 6 months at refrigerator conditions (4°C ± 2°C). Thus, the present research confirms that NLC-based gel can be a safe, efficacious, and novel alternative to treat BC.


Assuntos
Nanoestruturas , Neoplasias , Camundongos , Animais , Portadores de Fármacos/química , Nanoestruturas/química , Géis/química , Excipientes , Tensoativos , Lipídeos/química , Tamanho da Partícula
3.
AAPS PharmSciTech ; 23(1): 23, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907484

RESUMO

The objective of this research was to develop vitamin E oil (VEO)-loaded liposomes for intravenous delivery and to study the VEO effect on melphalan (MLN) loading, release, and stability. Further, the research aim was to determine the in vitro anticancer activity and in vivo systemic toxicity of MLN and simvastatin (SVN) combinations, for repurposing SVN in multiple myeloma. The liposomes were prepared by thin-film hydration technique. The optimized liposomes were surface modified with Pluronic F108, lyophilized, and evaluated for mean particle size, MLN content and release behavior, and in vitro hemolysis, cytotoxicity, and macrophage uptake characteristics. Further, in vivo acute toxicity of plain MLN + SVN combination was determined in comparison to their liposomal combination. The VEO alone and in combination with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) has significantly increased the MLN and SVN loading. The reconstituted liposomes showed the mean particle size below 200 nm (cryo-transmission electron microscope analysis also revealed the liposome formation). In presence of VEO, the liposomes have shown substantially controlled drug release, lower hemolysis, sustained cytotoxicity, lower phagocytosis, and moderately improved chemical stability. Besides, the effect of liposomal combination on mice bodyweight is found substantially lower than the plain drug combination. In conclusion, the VEO could be used along with phospholipids and cholesterol to develop liposomal drugs with improved physicochemical characteristics. Further, the interesting cytotoxicity study results indicated that SVN could be repurposed in combination with anticancer drug MLN against multiple myeloma; liposomal drugs could be preferred to obtain improved efficacy with decreased systemic toxicity.


Assuntos
Lipossomos , Mieloma Múltiplo , Animais , Melfalan , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Tamanho da Partícula , Polietilenoglicóis , Sinvastatina , Vitamina E
4.
Drug Dev Ind Pharm ; 45(3): 474-484, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30599774

RESUMO

PURPOSE: To prepare 7-epidocetaxel (7ED) and 10-oxo-7-epidocetaxel (10-O-7ED) formulations as like marketed Taxotere® (TXT) injection and to screen them for in vitro and in vivo anticancer efficacy including their in vivo toxicity behavior. METHODS: The 7ED and 10-O-7ED formulations were screened for in vitro anti-proliferative, anti-metastatic and cell cycle arresting behaviors. Further, in vivo acute toxicity of TXT injection containing 10% of 7ED and 10-O-7ED separately and the therapeutic study of 10-O-7ED alone were studied in B16F10 experimental metastasis mouse model. RESULTS: 10-O-7ED caused significantly higher cytotoxicity after 48 and 72 h than 22 h study. 10-O-7ED showed significantly increased in vitro anti-metastatic activity than TXT. The TXT caused more arrest of cells at S phase, whereas 10-O-7ED arrested more at G2-M phase and vice versa at higher concentration. In vivo acute toxicity study revealed better therapeutic effect with reduced toxicity of TXT containing 10% 10-O-7ED than TXT alone. Similarly, the therapeutic study revealed significantly less number of surface metastatic nodules formation with 10-O-7ED treated group (107 ± 49) (***p < .0001) than control group (348 ± 56). Also, the control group showed significant weight loss at the end (20th day) of the experiment (*p < .05, p = .041) than 10-O-7ED treated group which showed about 4% increased mean group weight. CONCLUSION: Our study revealed the significantly higher in vivo anti-metastatic behavior, with no toxicity, of 10-O-7ED. However, it is a preliminary observation being noticed but further investigations are needed to address the potential of 10-O-7ED in cancer treatment with mechanisms behind the improved therapeutic efficacy with no toxicity.


Assuntos
Antineoplásicos/farmacologia , Taxoides/farmacologia , Células A549 , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica/métodos , Docetaxel/farmacologia , Feminino , Humanos , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/tratamento farmacológico
5.
Pharm Res ; 30(10): 2675-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23756759

RESUMO

PURPOSE: The presence of 7-epidocetaxel in docetaxel injection and in vivo epimerisation has been reported to be the cause for development of tumor resistance to chemotherapy including docetaxel by inducing tumor cell protein cytochrome P450 1B1. The objective of this study was to determine systemic toxicity of Taxotere® containing 10% 7-epidocetaxel and to develop PEGylated liposomal injection that could resist epimerization in vivo. Another need for PEGylated liposomal delivery of docetaxel is to avoid reported hypersensitivity reactions of marketed products like Taxotere® and Duopafei® containing high concentration of tween-80. METHODS: The PEGylated liposomes loaded with docetaxel were prepared using thin film hydration method. The in vivo toxicity of Taxotere® containing 10% 7-epimer was studied in B16F10 experimental metastasis model. RESULTS: B16F10 experimental metastasis model using C57BL/6 mice injected with Taxotere® containing 10% 7-epimer showed higher weight loss as compared to Taxotere® containing no epimer at single dose of 40 mg/kg indicating higher systemic toxicity. Incubation of PEGylated liposomes with phosphate buffer saline (pH 7.4) containing 0.1% w/v Tween-80 for 48 h showed better resistance to docetaxel degradation when compared with Taxotere® injection indicating better in vivo stability of liposomal docetaxel. In addition, PEGylated liposomes showed enhanced in vitro cytotoxicity, against A549 and B16F10 cells, than Taxotere®. CONCLUSION: We can therefore expect less in vivo conversion of liposomal loaded docetaxel into 7-epimer, more passive targeting to tumor tissues, decreased 7-epimer induced systemic toxicity and tumor resistance to chemotherapy compared to Taxotere®. Further in vivo studies are needed to ascertain these facts.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Melanoma Experimental/tratamento farmacológico , Polietilenoglicóis/química , Taxoides/administração & dosagem , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Docetaxel , Feminino , Humanos , Lipossomos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Solubilidade , Estereoisomerismo , Propriedades de Superfície , Taxoides/efeitos adversos , Taxoides/química , Taxoides/uso terapêutico
6.
Eur J Pharm Biopharm ; 193: 28-43, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858803

RESUMO

PURPOSE: The objective of the current research work was to fabricate a fosfestrol (FST)-loaded self-nanoemulsifying drug delivery system (SNEDDS) to escalate the oral solubility and bioavailability and thereby the effectiveness of FST against prostate cancer. METHODS: 32 full factorial design was employed, and the effect of lipid and surfactant mixtures on percentage transmittance, time required for self-emulsification, and drug release were studied. The optimized solid FST-loaded SNEDDS (FSTNE) was characterized for in vitro anticancer activity and Caco-2 cell permeability, and in vivo pharmacokinetic parameters. RESULTS: Using different ratios of surfactant and co-surfactant (Km) a pseudo ternary phase diagram was constructed. Thirteen liquid nano emulsion formulations (LNE-1 to LNE-13) were formulated at Km = 3:1. LNE-9 exhibited a higher % transmittance (99.25 ± 1.82 %) and a lower self-emulsification time (24 ± 0.32 s). No incompatibility was observed in FT-IR analysis. Within 20 min the solidified FST loaded LNE-9 (FSTNE) formulation showed almost complete drug release (98.20 ± 1.30 %) when compared to marketed formulation (40.36 ± 2.8 %), and pure FST (32 ± 3.3 %) in 0.1 N HCl. In pH 6.8 phosphate buffer, the release profiles are found moderately higher than in 0.1 N HCl. FSTNE significantly (P < 0.001) inhibited the PC-3 prostate cell proliferation and also caused apoptosis (P < 0.001) compared to FST. The in vitro Caco-2 cell permeability study results revealed 4.68-fold higher cell permeability of FSTNE than FST. Remarkably, 4.5-fold rise in bioavailability was observed after oral administration of FSTNE than plain FST. CONCLUSIONS: FSTNE remarkably enhanced the in vitro anticancer activity and Caco-2 cell permeability, and in vivo bioavailability of FST. Thus, FST-SNEDDS could be utilized as a potential carrier for effective oral treatment of prostate cancer.


Assuntos
Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Disponibilidade Biológica , Espectroscopia de Infravermelho com Transformada de Fourier , Células CACO-2 , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Liberação Controlada de Fármacos , Tensoativos/química , Administração Oral , Neoplasias da Próstata/tratamento farmacológico , Emulsões/química , Nanopartículas/química , Tamanho da Partícula
7.
J Control Release ; 353: 1150-1170, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566843

RESUMO

Cancer ranks as the second foremost cause of death in various corners of the globe. The clinical uses of assorted anticancer therapeutics have been limited owing to the poor physicochemical attributes, pharmacokinetic performance, and lethal toxicities. Various sorts of co-crystals or nano co-crystals or co-crystals-laden nanocarriers have presented great promise in targeting cancer via improved physicochemical attributes, pharmacokinetic performance, and reduced toxicities. These systems have also demonstrated the controlled cargo release and passive targeting via enhanced permeation and retention (EPR) effect. In addition, regional delivery of co-crystals via inhalation and transdermal route displayed remarkable potential in targeting lung and skin cancer effectively. However, more research is required on the use of co-crystals in cancer and their commercialization. The present review mainly emphasizes co-crystals as emerging avenues in the treatment of various cancers by modulating the physicochemical and pharmacokinetic attributes of approved anticancer therapeutics. The worth of co-crystals in cancer treatment, computational paths in the co-crystals screening, diverse experimental techniques of co-crystals fabrication, and sorts of co-crystals and their noteworthy applications in targeting cancer are also discussed. Besides, the game changer approaches like nano co-crystals and co-crystals-laden nanocarriers, and co-crystals in regional delivery in cancer are also explained with reported case studies. Furthermore, regulatory directives for pharmaceutical co-crystals and their scale-up, and challenges are also highlighted with concluding remarks and future initiatives. In essence, co-crystals and nano co-crystals emerge to be a promising strategy in overwhelming cancers through improving anticancer efficacy, safety, patient compliance, and reducing the cost.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Cutâneas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-37991539

RESUMO

Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties. This picture was generated with BioRender.

9.
Pharm Res ; 29(1): 53-68, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21744174

RESUMO

PURPOSE: For nanocarrier-based targeted delivery systems, preventing phagocytosis for prolong circulation half life is a crucial task. PEGylated poly(n-butylcyano acrylate) (PBCA) NP has proven a promising approach for drug delivery, but an easy and reliable method of PEGylation of PBCA has faced a major bottleneck. METHODS: PEGylated PBCA NPs containing docetaxel (DTX) by modified anionic polymerization reaction in aqueous acidic media containing amine functional PEG were made as an single step PEGylation method. In vitro colloidal stability studies using salt aggregation method and antiopsonization property of prepared NPs using mouse macrophage cell line RAW264 were performed. In vitro performance of anticancer activity of prepared formulations was checked on MCF7 cell line. NPs were radiolabeled with 99mTc and intravenously administered to study blood clearance and biodistribution in mice model. RESULTS: These formulations very effectively prevented phagocytosis and found excellent carrier for drug delivery purpose. In vivo studies display long circulation half life of PBCA-PEG20 NP in comparison to other formulations tested. CONCLUSIONS: The PEGylated PBCA formulation can work as a novel tool for drug delivery which can prevent RES uptake and prolong circulation half life.


Assuntos
Portadores de Fármacos/farmacocinética , Embucrilato/farmacocinética , Nanopartículas , Polietilenoglicóis/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Docetaxel , Portadores de Fármacos/química , Embucrilato/química , Feminino , Meia-Vida , Humanos , Macrófagos/metabolismo , Camundongos , Fagocitose/efeitos dos fármacos , Polietilenoglicóis/química , Taxoides/administração & dosagem , Tecnécio/química , Distribuição Tecidual
10.
J Control Release ; 341: 1-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34780880

RESUMO

Lung cancer (LC) is one of the leading causes of mortality accounting for almost 25% of cancer deaths throughout the world. The shortfall of affordable and effective first-line chemotherapeutics, the existence of resistant tumors, and the non-optimal route of administration contribute to poor prognosis and high mortality in LC. Administration of repurposed non-oncology drugs (RNODs) loaded in nanocarriers (NCs) via inhalation may prove as an effective alternative strategy to treat LC. Furthermore, their site-specific release through inhalation route using an appropriate inhalation device would offer improved therapeutic efficacy, thereby reducing mortality and improving patients' quality of life. The current manuscript offers a comprehensive overview on use of RNODs in LC treatment with an emphasis on their inhalation delivery and the associated challenges. The role of NCs to improve lung deposition and targeting of RNODs via inhalation are also elaborated. In addition, information about various RNODs in clinical trials for the treatment of LC, possibility for repurposing phytoceuticals against LC via inhalation and the bottlenecks associated with repurposing RNODs against cancer are also highlighted. Based on the reported studies covered in this manuscript, it was understood that delivery of RNODs via inhalation has emerged as a propitious approach. Hence, it is anticipated to provide effective first-line treatment at an affordable cost in debilitating LC from low and middle-income countries (LMIC).


Assuntos
Neoplasias Pulmonares , Qualidade de Vida , Administração por Inalação , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Preparações Farmacêuticas
11.
Eur J Pharmacol ; 926: 175031, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580707

RESUMO

Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.


Assuntos
Melanoma , Neoplasias Cutâneas , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos , Melanoma/tratamento farmacológico , Preparações Farmacêuticas , Neoplasias Cutâneas/tratamento farmacológico , Melanoma Maligno Cutâneo
12.
J Control Release ; 349: 812-830, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914614

RESUMO

Breast cancer (BC) is a highly diagnosed and topmost cause of death in females worldwide. Drug repurposing (DR) has shown great potential against BC by overcoming major shortcomings of approved anticancer therapeutics. However, poor physicochemical properties, pharmacokinetic performance, stability, non-selectivity to tumors, and side effects are severe hurdles in repurposed drug delivery against BC. The variety of nanocarriers (NCs) has shown great promise in delivering repurposed therapeutics for effective treatment of BC via improving solubility, stability, tumor selectivity and reducing toxicity. Besides, delivering repurposed cargos via theranostic NCs can be helpful in the quick diagnosis and treatment of BC. Localized delivery of repurposed candidates through apt NCs can diminish the systemic side effects and improve anti-tumor effectiveness. However, breast tumor variability and tumor microenvironment have created several challenges to nanoparticulate delivery of repurposed cargos. This review focuses on DR as an ingenious strategy to treat BC and circumvent the drawbacks of approved anticancer therapeutics. Various nanoparticulate avenues delivering repurposed therapeutics, including non-oncology cargos and vaccines to target BC effectively, are discussed along with case studies. Moreover, clinical trial information on repurposed medications and vaccines for the treatment of BC is covered along with various obstacles in nanoparticulate drug delivery against cancer that have been so far identified. In a nutshell, DR and drug delivery of repurposed drugs via NCs appears to be a propitious approach in devastating BC.


Assuntos
Neoplasias da Mama , Vacinas , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Reposicionamento de Medicamentos , Feminino , Humanos , Preparações Farmacêuticas , Microambiente Tumoral , Vacinas/uso terapêutico
13.
J Tradit Complement Med ; 11(3): 259-267, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34012872

RESUMO

BACKGROUND AND AIM: Herbal medicine combined with nanotechnology is widely proposed to improve the oral bioavailability, reduce the required dose and side effects, and improve the pharmacological efficacy of extracts. Thus, this study evaluated the in vivo antidiabetic and antihyperlipidemic activities of ethanolic leaf extracts of Argyreia pierreana (AP) and Matelea denticulata (MP) plants in comparison with their micellar nanoformulations. MATERIALS AND METHODS: The mixed micelles (MMs) loaded with crude extracts (CEs) of AP and MD (AP-MMs and MD-MMs) were prepared using a film dispersion technique. Type 2 diabetes was induced in rats using high-fat diet (HFD) and low-dose (35 mg/kg) streptozotocin (STZ) injection. The pharmacological actions of CEs, AP-MMs and MD-MMs were determined in type 2 diabetic Sprague-Dawley rats. RESULTS: Oral treatments with low-dose AP-MMs and MD-MMs having a mean particle size of 163 ± 10 nm and 145 ± 8 nm respectively, resulted in significantly decreased fasting blood glucose level and increased serum insulin, glucokinase levels, and normalized the elevated levels of hemoglobin A1C and glucose-6-phosphatase. Both extracts significantly decreased serum total cholesterol, triglycerides, and low-density lipoprotein, as well as elevated high-density lipoprotein levels. Additionally, improvements in antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and malondialdehyde levels were evidenced clearly in tested vital organs (brain, heart, liver). CONCLUSION: This is the first report of the antidiabetic and antihyperlipidemic activities of ethanolic leaf extracts of AP and MP plants. Our findings indicate the potential utility of nanotechnology in improving the oral therapeutic efficacy of herbal extracts.

14.
J Egypt Natl Canc Inst ; 33(1): 4, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33555490

RESUMO

BACKGROUND: Osteosarcoma (OS) is one of the key cancers affecting the bone tissues, primarily occurred in children and adolescence. Recently, chemotherapy followed by surgery and then post-operative adjuvant chemotherapy is widely used for the treatment of OS. However, the lack of selectivity and sensitivity to tumor cells, the development of multi-drug resistance (MDR), and dangerous side effects have restricted the use of chemotherapeutics. MAIN BODY: There is an unmet need for novel drug delivery strategies for effective treatment and management of OS. Advances in nanotechnology have led to momentous progress in the design of tumor-targeted drug delivery nanocarriers (NCs) as well as functionalized smart NCs to achieve targeting and to treat OS effectively. The present review summarizes the drug delivery challenges in OS, and how organic nanoparticulate approaches are useful in overcoming barriers will be explained. The present review describes the various organic nanoparticulate approaches such as conventional nanocarriers, stimuli-responsive NCs, and ligand-based active targeting strategies tested against OS. The drug conjugates prepared with copolymer and ligand having bone affinity, and advanced promising approaches such as gene therapy, gene-directed enzyme prodrug therapy, and T cell therapy tested against OS along with their reported limitations are also briefed in this review. CONCLUSION: The nanoparticulate drugs, drug conjugates, and advanced therapies such as gene therapy, and T cell therapy have promising and potential application in the effective treatment of OS. However, many of the above approaches are still at the preclinical stage, and there is a long transitional period before their clinical application.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Preparações Farmacêuticas , Neoplasias Ósseas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Nanotecnologia , Osteossarcoma/tratamento farmacológico
15.
Drug Deliv Transl Res ; 10(4): 1122-1135, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32221848

RESUMO

The objective of the present study was to screen the effect of increased simvastatin (SVS) solubility, through mixed micelles as a model approach, on in vitro anticancer efficacy in combination with hydrophilic alendronate sodium (ADS) as a strategy to improve therapeutic efficacy and to repositioning the existing drugs. The SVS-loaded mixed micelles (SVS-MMs) composed of TPGS and Poloxamer-407 were prepared using the film dispersion method and characterized for SVS loading and mean particle size. The optimized SVS-MMs were physically mixed with plain ADS (SVS + ADS MMs) and screened for in vitro cytotoxicity using MTT assay and cell cycle arresting and apoptotic activities using FACS technique. The optimized SVS-MMs showed maximum SVS loading (97.3 ± 2.3%) with minimum particle size (206 ± 8 nm). The SVS + ADS MM treatment significantly (P < 0.001) inhibited the cell growth with low IC50 values against all cells (A549: 0.037 ± 0.028 µg/mL, MDAMB-231: 0.172 ± 0.031 µg/mL, PC-3: 0.022 ± 0.015 µg/mL). Further, the SVS + ADS MM treatment significantly inhibited the cell multiplication in the S phase and resulted in high % of late apoptotic and necrotic cells at low concentration (0.05 and 0.15 µg/mL) as compared other test samples. The above results revealed the significance of encapsulating SVS in the core of MMs (improved solubility), and high efficacy and quick effect of SVS + ADS MM treatment against all cell lines screened. Graphical abstract.


Assuntos
Alendronato/administração & dosagem , Antineoplásicos/administração & dosagem , Sinvastatina/administração & dosagem , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Micelas , Poloxâmero/administração & dosagem
16.
J Egypt Natl Canc Inst ; 32(1): 42, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33191444

RESUMO

BACKGROUND: Podophyllotoxin (PPT) is a naturally occurring compound obtained from the roots of Podophyllum species, indicated for a variety of malignant tumors such as breast, lung, and liver tumors. This toxic polyphenol (PPT) exhibited significant activity against P-glycoprotein (P-gp) mediated multidrug-resistant (MDR) cancer cells. However, extremely poor water solubility, a narrow therapeutic window, and high toxicity have greatly restricted the clinical uses of PPT. Therefore, the present research was aimed to synthesize the water-soluble ester prodrug of PPT with polyacrylic acid (PAA), a water-soluble polymer by Steglich esterification reaction, and to screen it for assay, solubility, in vitro hemolysis, in vitro release, and in vitro anticancer activity. RESULTS: The Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy results revealed the successful synthesis of podophyllotoxin-polyacrylic acid conjugate (PPC). The assay and saturation solubility of the prodrug is found to be 64.01 ± 4.5% and 1.39 ± 0.05 mg/mL (PPT equivalent) respectively. The PPC showed CMC (critical micelle concentration) of 0.430 mg/mL in distilled water at room temperature. The PPC micelles showed a mean particle size of 215 ± 11 nm with polydispersity index (PDI) of 0.193 ± 0.006. Further, the transmission electron microscope (TEM) results confirmed the self-assembling character of PPC into micelles. The PPC caused significantly less hemolysis (18.6 ± 2.9%) than plain PPT solution. Also, it demonstrated significantly (p < 0.01) higher in vitro cytotoxicity against both sensitive as well as resistance human breast cancer cells (MCF-7 and MDA MB-231) after 48 h of treatment. CONCLUSION: The obtained study results clearly revealed the notable in vitro anticancer activity of PPT following its esterification with PAA. However, further in vivo studies are needed to ascertain its efficacy against a variety of cancers.


Assuntos
Antineoplásicos , Neoplasias da Mama , Resinas Acrílicas , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Micelas , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico
17.
Artigo em Inglês | MEDLINE | ID: mdl-30789817

RESUMO

Mixed micelles self-assembled from two or more dissimilar block copolymers provide a direct and convenient approach to improved drug delivery. The present review is focused on mixed micelles (prepared from block copolymers only) for various drug delivery applications along with their merits over single-copolymer micelles. Presented are the physicochemical properties of mixed and single-copolymer micelles, various stimuli-responsive mixed micelles for the treatment of cancer, interesting combinations of multifunctional mixed micelles along with their in vitro and in vivo performance, and the potential of mixed micelles as a gene delivery system. Finally, the performance of mixed micelles in preclinical and clinical testing is explained. In addition, the interaction of mixed micelles with cancer cells and the biosafety of mixed micelles are summarized. The in vitro and in vivo performance presented here clearly reveals that the mixed-micelle approach has a wider scope than that of the single-copolymer micelle approach and directs researchers to focus on this approach to delivery of drugs/gene/biologics for various applications.


Assuntos
Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos , Micelas , Polímeros/química , Animais , Antineoplásicos/administração & dosagem , Sinergismo Farmacológico , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polímeros/administração & dosagem , Eletricidade Estática
18.
Artigo em Inglês | MEDLINE | ID: mdl-30806205

RESUMO

Mixed micelles self-assembled from two or more dissimilar block copolymers provide a direct and convenient approach to improved drug delivery. The present review is focused on mixed micelles (prepared from block copolymers only) for various drug delivery applications along with their merits over single-copolymer micelles. Presented are the physicochemical properties of mixed and single-copolymer micelles, various stimuli-responsive mixed micelles for the treatment of cancer, interesting combinations of multifunctional mixed micelles along with their in vitro and in vivo performance, and the potential of mixed micelles as a gene delivery system. Finally, the performance of mixed micelles in preclinical and clinical testing is explained. In addition, the interaction of mixed micelles with cancer cells and the biosafety of mixed micelles are summarized. The in vitro and in vivo performance presented here clearly reveals that the mixed-micelle approach has a wider scope than that of the single-copolymer micelle approach and directs researchers to focus on this approach to delivery of drugs/gene/biologics for various applications.

19.
Curr Drug Deliv ; 16(2): 111-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30360740

RESUMO

BACKGROUND: Gemcitabine (GEM) is found effective in the treatment of many solid tumors. However, its use is restricted due to its small circulation half-life, fast metabolism and low capacity for selective tumor uptake. Folate receptors (FRs) have been recognized as cellular surface markers, which can be used for cancer targeting. PEGylated liposomes decorated with folic acid have been investigated for several anticancer agents not only to extend plasma half-life but also for tumor targeting via folic acid receptors which overexpressed on tumor cell surface. OBJECTIVE: Therefore, the objective of the present study was to prepare GEM-loaded folic acid tagged liposomes to improve the pharmacokinetics and tumor distribution of GEM. METHODS: The blank folate-targeted liposomes composed of HSPC/DSPE-mPEG2000/DSPE-mPEG-Folic acid were prepared first by thin film hydration technique. GEM was then loaded into liposomes by remote loading technique. The optimized liposomal formulations were evaluated in vitro for GEM release using dialysis technique, HeLa cell uptake using FACS technique, and cytotoxicity using MTT dye reduction assay. The comparative in vivo pharmacokinetic and biodistribution characteristics of radiolabeled (99mTc-labeled) plain GEM solution, and all liposomal formulations (conventional:CLs; stealth: SLs; folate targeted: FTLs) were evaluated in mice model. RESULTS: GEM-loaded FTLs showed sustained release profile, efficient uptake by HeLa cells and greater cytotoxicity. Further, FTLs displayed significantly improved pharmacokinetics, and biodistribution profile of loaded GEM. CONCLUSION: In conclusion, the developed GEM-loaded folic acid receptor-targeted liposomal formulation could be a promising and potential alternative formulation for further development.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Ácido Fólico/administração & dosagem , Fosfatidiletanolaminas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacocinética , Liberação Controlada de Fármacos , Feminino , Ácido Fólico/química , Ácido Fólico/farmacocinética , Células HeLa , Humanos , Lipossomos , Camundongos , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/farmacocinética , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Gencitabina
20.
Curr Drug Deliv ; 15(4): 564-575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28637416

RESUMO

BACKGROUND: Docetaxel (DTX) has been used to treat several types of cancers, but it has provided pharmaceutical challenges due to its poor water solubility and toxicities associated with the co-solvents (tween-80 and ethanol). Nanopolymer therapeutics can be engineered to deliver anticancer agent specifically to cancer cells, thereby leaving normal healthy cells unaffected by toxic drugs such as DTX. The objective of the present study was to synthesize the polyacrylic acid (PAA)-DTX conjugate (PAADC) and preparation of nanopolymer therapeutics such as PAADC/DSPE-mPEG2000 mixed micelles (PAADC-DP MMs). METHODS: The prepared PAADC-DP MMs were characterized for mean particle size and zeta potential, in vitro release profile using dialysis technique, hemolytic behavior against human blood, and cytotoxicity against human cancer cell line (A549) using MTT assay. In vivo acute toxicity of PAADC-DP MMs was determined in albino mice at intravenous single dose of 40 mg/kg. RESULTS: PAADC-DP MMs showed mean particle size of 443±9nm. PAADC-DP MMs showed maximum DTX loading (DTX equivalent; 90.5±2.7%) with minimum DSPE-mPEG2000 molecules (1:1 ratio), while to load 77.9±2.2% of plain DTX, more DSPE-mPEG2000 is required(1:10 ratio). The developed PAADC-DP MMs system showed significantly lower CMC (5 ng/mL), sustained release profile (28.6±1.9% after 48 h of study), lower hemolytic behavior (13.7±1.3% of hemolysis ratio at 40 µg/mL concentration and after 1 h incubation), higher in vitro cytotoxicity (IC50 of 0.0064±0.001 nM after 48 h study) and remarkably reduced in vivo toxicity (9.9±2.1% body weight loss) in mice when compared to marketed Taxotere®. CONCLUSION: The obtained results clearly demonstrated that the developed PAADC-DP MMs system is a promising approach for cancer chemotherapy with reduced toxicity.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Micelas , Polímeros/química , Taxoides/administração & dosagem , Taxoides/química , Resinas Acrílicas/química , Animais , Linhagem Celular Tumoral , Docetaxel , Liberação Controlada de Fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Nanotecnologia/métodos , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Taxoides/farmacologia , Taxoides/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa