Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 36(23): e9392, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057935

RESUMO

RATIONALE: The level of visual detail of a mass spectrometry image is dependent on the spatial resolution with which it is acquired, which is largely determined by the focal diameter in infrared laser ablation-based techniques. While the use of mid-IR light for mass spectrometry imaging (MSI) has advantages, it results in a relatively large focal diameter and spatial resolution. The continual advancement of infrared matrix-assisted electrospray ionization (IR-MALDESI) for MSI warranted novel methods to decrease laser ablation areas and thus improve spatial resolution. METHODS: In this work, a Schwarzschild-like reflective objective was incorporated into the novel NextGen IR-MALDESI source and characterized on both burn paper and mammalian tissue using an ice matrix. Ablation areas, mass spectra, and annotations obtained using the objective were compared against the current optical train on the NextGen system without modification. RESULTS: The effective resolution was determined to be 55 µm by decreasing the step size until oversampling was observed. Use of the objective improved the spatial resolution by a factor of three as compared against the focus lens. CONCLUSIONS: A Schwarzschild-like reflective objective was successfully incorporated into the NextGen source and characterized on mammalian tissue using an ice matrix. The corresponding improvement in spatial resolution facilitates the future expansion of IR-MALDESI applications to include those that require fine structural detail.


Assuntos
Gelo , Espectrometria de Massas por Ionização por Electrospray , Animais , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lasers , Mamíferos
2.
J Am Soc Mass Spectrom ; 34(1): 10-16, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36542595

RESUMO

Many mass spectrometry imaging (MSI) applications such as infrared matrix-assisted electrospray ionization (IR-MALDESI) employ an infrared (IR) laser with a Gaussian profile where laser irradiance is highest in the center and decreases exponentially. To enable full ablation of a square region of interest, oversampling is often needed, which results in nonuniform ablation and leads to decreased image quality. A diffractive optical element (DOE) was integrated into the optical path to generate homogeneous intensity distributions while maintaining laser energy above the ablation threshold, to enable complete sample removal from laser pulses without oversampling. 2D and 3D imaging with the DOE inserted show clear and sharp ablation patterns with satisfactory biological signals gained. Further improvements will optimize the beam profile and generate a square top-hat laser beam for MSI application at higher spatial resolution.


Assuntos
Lasers , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Luz
3.
J Mass Spectrom ; 58(1): e4902, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694312

RESUMO

High-throughput screening (HTS) is a technique mostly used by pharmaceutical companies to rapidly screen multiple libraries of compounds to find drug hits with biological or pharmaceutical activity. Mass spectrometry (MS) has become a popular option for HTS given that it can simultaneously resolve hundreds to thousands of compounds without additional chemical derivatization. For this application, it is convenient to do direct analysis from well plates. Herein, we present the development of an infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) source coupled directly to an Agilent 6545 for direct analysis from well plates. The source is coupled to a quadrupole time-of-flight (Q-TOF) mass spectrometer to take advantage of the high acquisition rates without sacrificing resolving power as required with Orbitrap or Fourier-transform ion cyclotron resonance (FTICR) instruments. The laser used for this source operates at 100 Hz, firing 1 pulse-per-burst, and delivers around 0.7 mJ per pulse. Continuously firing this laser for an extended duration makes it a quasi-continuous ionization source. Additionally, a metal capillary was constructed to extend the inlet of the mass spectrometer, increase desolvation of electrospray charged droplets, improve ion transmission, and increase sensitivity. Its efficiency was compared with the conventional dielectric glass capillary by measured signal and demonstrated that the metal capillary increased ionization efficiency due to its more uniformly distributed temperature gradient. Finally, we present the functionality of the source by analyzing tune mix directly from well plates. This source is a proof of concept for HTS applications using IR-MALDESI coupled to a different MS platform.

4.
Opt Express ; 20(10): 11288-315, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565751

RESUMO

We propose a method based on quantitative theoretical analysis for achieving speckle contrast of 1% or less in images created by a full-frame laser projection display system. The method employs a stationary multimode optical fiber to achieve the effect of using a rapidly moving diffuser, but without moving the fiber or any other system component. When a suitably large projector lens is used, low-speckle illumination light delivered through the fiber acts in conjunction with wavelength diversity at the projection screen to achieve speckle contrast of 1% in viewed images. We describe in detail how the proposed method might be used with most types of high-power visible lasers being considered for large-venue displays. When used with visible laser diodes, the method may also be suitable for use in laser-based television.


Assuntos
Fibras Ópticas , Algoritmos , Desenho de Equipamento , Análise de Fourier , Lasers , Luz , Modelos Estatísticos , Modelos Teóricos , Distribuição Normal , Óptica e Fotônica , Semicondutores , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa