Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 73(6): 1347-1359, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32598967

RESUMO

BACKGROUND & AIMS: Selective elimination of virus-infected hepatocytes occurs through virus-specific CD8 T cells recognizing peptide-loaded MHC molecules. Herein, we report that virus-infected hepatocytes are also selectively eliminated through a cell-autonomous mechanism. METHODS: We generated recombinant adenoviruses and genetically modified mouse models to identify the molecular mechanisms determining TNF-induced hepatocyte apoptosis in vivo and used in vivo bioluminescence imaging, immunohistochemistry, immunoblot analysis, RNAseq/proteome/phosphoproteome analyses, bioinformatic analyses, mitochondrial function tests. RESULTS: We found that TNF precisely eliminated only virus-infected hepatocytes independently of local inflammation and activation of immune sensory receptors. TNF receptor I was equally relevant for NF-kB activation in healthy and infected hepatocytes, but selectively mediated apoptosis in infected hepatocytes. Caspase 8 activation downstream of TNF receptor signaling was dispensable for apoptosis in virus-infected hepatocytes, indicating an unknown non-canonical cell-intrinsic pathway promoting apoptosis in hepatocytes. We identified a unique state of mitochondrial vulnerability in virus-infected hepatocytes as the cause for this non-canonical induction of apoptosis through TNF. Mitochondria from virus-infected hepatocytes showed normal biophysical and bioenergetic functions but were characterized by reduced resilience to calcium challenge. In the presence of unchanged TNF-induced signaling, reactive oxygen species-mediated calcium release from the endoplasmic reticulum caused mitochondrial permeability transition and apoptosis, which identified a link between extrinsic death receptor signaling and cell-intrinsic mitochondrial-mediated caspase activation. CONCLUSION: Our findings reveal a novel concept in immune surveillance by identifying a cell-autonomous defense mechanism that selectively eliminates virus-infected hepatocytes through mitochondrial permeability transition. LAY SUMMARY: The liver is known for its unique immune functions. Herein, we identify a novel mechanism by which virus-infected hepatocytes can selectively eliminate themselves through reduced mitochondrial resilience to calcium challenge.


Assuntos
Caspase 8/metabolismo , Hepatócitos , Mitocôndrias Hepáticas , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Apoptose/imunologia , Sinalização do Cálcio , Células Cultivadas , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Camundongos , Mitocôndrias Hepáticas/imunologia , Mitocôndrias Hepáticas/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
2.
Xenotransplantation ; 27(6): e12634, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32808410

RESUMO

BACKGROUND: Ubiquitous expression of T-cell regulatory transgenes such as the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) or the high-affinity variant LEA29Y improves xeno graft survival. Such donor pigs are however immunocompromised and susceptible to infection. Continous high expression of CTLA4 or LEA29Y in the graft could also compromise the health status of recipients. The novel "Smart Graft" strategy is likely to avoid these problems by controlling the expression of T-cell regulatory transgenes as and when required. METHODS: Candidate promoters inducible by inflammatory cytokines were identified by in silico screening for potential NF-κB binding sites. Basal promoter levels and responsiveness to TNFα and IL1ß were quantified by expression of secreted embryonic alkaline phosphatase in cultured cells. Promoters were modified to increase responsiveness by removing regulatory elements or adding SP-1 or NF-κB binding sites and again tested in vitro. The most promising promoters were then assessed in vivo. Porcine cells expressing inducible Renilla luciferase constructs were transplanted into immunodeficient NOD-Scid-IL2 receptor gammanull (NSG) mice. Following engraftment, the recipient's immune system was reconstituted by splenocyte transfer raising an immune response to the porcine xenograft. The resulting induction of promoter activity was detected by in vivo bioimaging. RESULTS: Three human (hTNFAIP1, hVCAM1 and hCCL2), and one porcine promoter (pA20) were chosen for in vitro tests. In all experiments, the semi-synthetic and inducible ELAM promoter as well as the CAG promoter were used as references. In contrast to hTNFAIP1 and hVCAM1 the ELAM, hCCL2 and pA20 promoters showed significant induction after cytokine challenge. The hCCL2 and pA20 promoters were further optimized, resulting in increased responsiveness to TNFα and IL1ß. Cytokine-dependent upregulation of promoter activity was tested in vivo, where the ELAM and the optimized hCCL2 promoters showed a 2-fold upregulation, while one of the improved A20 promoters showed almost 10-fold upregulation. Our results also revealed more than 4-fold cytokine inducibility of the CAG promoter. CONCLUSION: This is the first in vivo comparison of existing and newly designed cytokine-inducible promoters. Optimization of promoter structure resulted in almost 10-fold inducibility of promoter activity. Such a rapid and dynamically regulated response to inflammation and cell damage could reduce initial graft rejection, making the "Smart Graft" approach a useful means of modulating the expression of immune regulatory transgenes to avoid deleterious effects on porcine and human health. Expressing transgenes in this fashion could provide a safer organ for transplantation.


Assuntos
Citocinas , Regiões Promotoras Genéticas , Transgenes , Transplante Heterólogo , Animais , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Suínos
3.
Hepatology ; 68(6): 2089-2105, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29729204

RESUMO

The liver bears unique immune properties that support both immune tolerance and immunity, but the mechanisms responsible for clearance versus persistence of virus-infected hepatocytes remain unclear. Here, we dissect the factors determining the outcome of antiviral immunity using recombinant adenoviruses that reflect the hepatropism and hepatrophism of hepatitis viruses. We generated replication-deficient adenoviruses with equimolar expression of ovalbumin, luciferase, and green fluorescent protein driven by a strong ubiquitous cytomegalovirus (CMV) promoter (Ad-CMV-GOL) or by 100-fold weaker, yet hepatocyte-specific, transthyretin (TTR) promoter (Ad-TTR-GOL). Using in vivo bioluminescence to quantitatively and dynamically image luciferase activity, we demonstrated that Ad-TTR-GOL infection always persists, whereas Ad-CMV-GOL infection is always cleared, independent of the number of infected hepatocytes. Failure to clear Ad-TTR-GOL infection involved mechanisms acting during initiation as well as execution of antigen-specific immunity. First, hepatocyte-restricted antigen expression led to delayed and curtailed T-cell expansion-10,000-fold after Ad-CMV-GOL versus 150-fold after Ad-TTR-GOL-infection. Second, CD8 T-cells primed toward antigens selectively expressed by hepatocytes showed high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression levels similar to that seen in chronic hepatitis B. Third, Ad-TTR-GOL but not Ad-CMV-GOL-infected hepatocytes escaped being killed by effector T-cells while still inducing high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression, indicating different thresholds of T-cell receptor signaling relevant for triggering effector functions compared with exhaustion. Conclusion: Our study identifies deficits in the generation of CD8 T-cell immunity toward hepatocyte-expressed antigens and escape of infected hepatocytes expressing low viral antigen levels from effector T-cell killing as independent factors promoting viral persistence. This highlights the importance of addressing both the restauration of CD8 T-cell dysfunction and overcoming local hurdles of effector T-cell function to eliminate virus-infected hepatocytes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepatite Viral Animal/imunologia , Hepatócitos/imunologia , Adenoviridae , Animais , Antígenos/metabolismo , Citomegalovirus/genética , Expressão Gênica , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pré-Albumina/genética , Regiões Promotoras Genéticas
4.
J Immunol Methods ; 526: 113617, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215900

RESUMO

Immunotherapy using TCR and especially CAR transgenic T cells is a rapidly advancing field with the potential to become standard of care for the treatment of multiple diseases. While all current FDA approved CAR T cell products are generated using lentiviral gene transfer, extensive work is put into CRISPR/Cas mediated gene delivery to develop the next generation of safer and more potent cell products. One limitation of all editing systems is the size restriction of the knock-in cargo. Targeted integration under control of an endogenous promotor and/or signaling cascades opens the possibility to reduce CAR gene size to absolute minimum. Here we demonstrate that a first-generation CAR payload can be reduced to its minimum component - the antigen-binding domain - by targeted integration under control of the CD3ε promoter generating a CAR-CD3ε fusion protein that exploits the endogenous TCR signaling cascade. Miniaturizing CAR payload in this way results in potent CAR activity while simultaneously retaining the primary antigen recognition function of the TCR. Introducing CAR-specificity using a CAR binder only while maintaining endogenous TCR function may be an appealing design for future autologous CAR T cell therapies.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Imunoterapia Adotiva/métodos , Imunoterapia , Receptores de Antígenos de Linfócitos T
5.
JHEP Rep ; 4(5): 100465, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35462860

RESUMO

Background & Aims: Increased sensitivity towards tumor necrosis factor (TNF)-induced cell death in virus-infected hepatocytes has revealed a so far unrecognized hepatocyte-intrinsic antiviral immune surveillance mechanism, for which no in vitro or ex vivo model is available. We aimed to establish precision-cut liver slices (PCLS) as a model system to study hepatocyte-intrinsic regulation of apoptosis. Methods: Preparation of PCLS from mouse and human liver tissue was optimized for minimal procedure-associated apoptosis. Functionality of liver cells in PCLS was characterized using extracellular flux analysis to determine mitochondrial respiration, and viral infection with recombinant adenovirus and lymphocytic choriomeningitis virus (LCMV) was used to probe for hepatocyte-intrinsic sensitivity towards apoptosis in PCLS. Apoptosis was detected by immunohistochemical staining for cleaved-caspase 3 and quantified by detection of effector caspase activity in PCLS. Results: We established an optimized protocol for preparation of PCLS from human and mouse models using agarose-embedding of liver tissue to improve precision cutting and using organ-protective buffer solutions to minimize procedure-associated cell death. PCLS prepared from virus-infected livers showed preserved functional metabolic properties. Importantly, in PCLS from adenovirus- and LCMV-infected livers we detected increased induction of apoptosis after TNF challenge ex vivo. Conclusion: We conclude that PCLS can be used as model system to ex vivo characterize hepatocyte-intrinsic sensitivity to cell death. This may also enable researchers to characterize human hepatocyte sensitivity to apoptosis in PCLS prepared from patients with acute or chronic liver diseases. Lay summary: Virus-infected hepatocytes in vivo show an increased sensitivity towards induction of cell death signaling through the TNF receptor. Studying this hepatocyte-intrinsic antiviral immune surveillance mechanism has been hampered by the absence of model systems that reciprocate the in vivo finding of increased apoptosis of virus-infected hepatocytes challenged with TNF. Herein, we report that an optimized protocol for generation of precision-cut liver slices can be used to study this hepatocyte-intrinsic surveillance mechanism ex vivo.

6.
Viruses ; 13(11)2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34835079

RESUMO

Immunity against hepatitis B virus (HBV) infection is complex and not entirely understood so far, including the decisive factors leading to the development of chronic hepatitis B. This lack of a mechanistic understanding of HBV-specific immunity is also caused by a limited number of suitable animal models. Here, we describe the generation of a recombinant adenovirus expressing an HBV 1.3-overlength genome linked to luciferase (Ad-HBV-Luc) allowing for precise analysis of the quantity of infected hepatocytes. This enables sensitive and close-meshed monitoring of HBV-specific CD8 T cells and the onset of anti-viral immunity in mice. A high dose of Ad-HBV-Luc developed into chronic hepatitis B accompanied by dysfunctional CD8 T cells characterized by high expression of PD1 and TOX and low expression of KLRG1 and GzmB. In contrast, a low dose of Ad-HBV-Luc infection resulted in acute hepatitis with CD8 T cell-mediated elimination of HBV-replicating hepatocytes associated with elevated sALT levels and increased numbers of cytotoxic HBV-specific CD8 T cells. Thus, the infectious dose was a critical factor to induce either acute self-limited or chronic HBV infection in mice. Taken together, the new Ad-HBV-Luc vector will allow for highly sensitive and time-resolved analysis of HBV-specific immune responses during acute and chronic infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Replicação Viral/imunologia , Adenoviridae/genética , Animais , Linfócitos T CD8-Positivos/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Hepatite B Crônica/virologia , Hepatócitos/imunologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Nat Commun ; 12(1): 6918, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824277

RESUMO

While viral replication processes are largely understood, comparably little is known on cellular mechanisms degrading viral RNA. Some viral RNAs bear a 5'-triphosphate (PPP-) group that impairs degradation by the canonical 5'-3' degradation pathway. Here we show that the Nudix hydrolase 2 (NUDT2) trims viral PPP-RNA into monophosphorylated (P)-RNA, which serves as a substrate for the 5'-3' exonuclease XRN1. NUDT2 removes 5'-phosphates from PPP-RNA in an RNA sequence- and overhang-independent manner and its ablation in cells increases growth of PPP-RNA viruses, suggesting an involvement in antiviral immunity. NUDT2 is highly homologous to bacterial RNA pyrophosphatase H (RppH), a protein involved in the metabolism of bacterial mRNA, which is 5'-tri- or diphosphorylated. Our results show a conserved function between bacterial RppH and mammalian NUDT2, indicating that the function may have adapted from a protein responsible for RNA turnover in bacteria into a protein involved in the immune defense in mammals.


Assuntos
Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Estabilidade de RNA , RNA Viral/metabolismo , Adaptação Fisiológica , Animais , Antivirais , Células da Medula Óssea , Sistemas CRISPR-Cas , Exonucleases , Exorribonucleases , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos , Polifosfatos , RNA Bacteriano , RNA Mensageiro , Replicação Viral
8.
Nat Commun ; 12(1): 3526, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112805

RESUMO

Current therapeutic approaches for chronic lymphocytic leukemia (CLL) focus on the suppression of oncogenic kinase signaling. Here, we test the hypothesis that targeted hyperactivation of the phosphatidylinositol-3-phosphate/AKT (PI3K/AKT)-signaling pathway may be leveraged to trigger CLL cell death. Though counterintuitive, our data show that genetic hyperactivation of PI3K/AKT-signaling or blocking the activity of the inhibitory phosphatase SH2-containing-inositol-5'-phosphatase-1 (SHIP1) induces acute cell death in CLL cells. Our mechanistic studies reveal that increased AKT activity upon inhibition of SHIP1 leads to increased mitochondrial respiration and causes excessive accumulation of reactive oxygen species (ROS), resulting in cell death in CLL with immunogenic features. Our results demonstrate that CLL cells critically depend on mechanisms to fine-tune PI3K/AKT activity, allowing sustained proliferation and survival but avoid ROS-induced cell death and suggest transient SHIP1-inhibition as an unexpectedly promising concept for CLL therapy.


Assuntos
Morte Celular/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Humanos , Imuno-Histoquímica , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transplante Homólogo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108220

RESUMO

CAR T cell therapy remains ineffective in solid tumors, due largely to poor infiltration and T cell suppression at the tumor site. T regulatory (Treg) cells suppress the immune response via inhibitory factors such as transforming growth factor-ß (TGF-ß). Treg cells expressing the C-C chemokine receptor 8 (CCR8) have been associated with poor prognosis in solid tumors. We postulated that CCR8 could be exploited to redirect effector T cells to the tumor site while a dominant-negative TGF-ß receptor 2 (DNR) can simultaneously shield them from TGF-ß. We identified that CCL1 from activated T cells potentiates a feedback loop for CCR8+ T cell recruitment to the tumor site. This sustained and improved infiltration of engineered T cells synergized with TGF-ß shielding for improved therapeutic efficacy. Our results demonstrate that addition of CCR8 and DNR into CAR T cells can render them effective in solid tumors.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/farmacologia
10.
Sci Rep ; 9(1): 8492, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186476

RESUMO

Mitochondria are key for cellular metabolism and signalling processes during viral infection. We report a methodology to analyse mitochondrial properties at the single-organelle level during viral infection using a recombinant adenovirus coding for a mitochondrial tracer protein for tagging and detection by multispectral flow cytometry. Resolution at the level of tagged individual mitochondria revealed changes in mitochondrial size, membrane potential and displayed a fragile phenotype during viral infection of cells. Thus, single-organelle and multi-parameter resolution allows to explore altered energy metabolism and antiviral defence by tagged mitochondria selectively in virus-infected cells and will be instrumental to identify viral immune escape and to develop and monitor novel mitochondrial-targeted therapies.


Assuntos
Mitocôndrias Hepáticas/metabolismo , Viroses/metabolismo , Animais , Células HEK293 , Hepatócitos/ultraestrutura , Hepatócitos/virologia , Humanos , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/ultraestrutura , Mitocôndrias Hepáticas/virologia , Tamanho das Organelas
11.
Cancer Cell ; 36(3): 250-267.e9, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31526758

RESUMO

How lymphoma cells (LCs) invade the brain during the development of central nervous system lymphoma (CNSL) is unclear. We found that NF-κB-induced gliosis promotes CNSL in immunocompetent mice. Gliosis elevated cell-adhesion molecules, which increased LCs in the brain but was insufficient to induce CNSL. Astrocyte-derived CCL19 was required for gliosis-induced CNSL. Deleting CCL19 in mice or CCR7 from LCs abrogated CNSL development. Two-photon microscopy revealed LCs transiently entering normal brain parenchyma. Astrocytic CCL19 enhanced parenchymal CNS retention of LCs, thereby promoting CNSL formation. Aged, gliotic wild-type mice were more susceptible to forming CNSL than young wild-type mice, and astrocytic CCL19 was observed in both human gliosis and CNSL. Therefore, CCL19-CCR7 interactions may underlie an increased age-related risk for CNSL.


Assuntos
Envelhecimento/patologia , Neoplasias do Sistema Nervoso Central/patologia , Quimiocina CCL19/metabolismo , Gliose/patologia , Linfoma/patologia , Adolescente , Adulto , Idoso , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/patologia , Linhagem Celular Tumoral/transplante , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/cirurgia , Quimiocina CCL19/genética , Quimiocina CXCL12 , Modelos Animais de Doenças , Feminino , Gliose/diagnóstico por imagem , Humanos , Microscopia Intravital , Linfoma/diagnóstico por imagem , Linfoma/cirurgia , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Imagem com Lapso de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa