Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Catal ; 3(4): 376-385, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32292878

RESUMO

A worldwide replacement of the toxic mercuric chloride catalyst in vinyl chloride manufacture via acetylene hydrochlorination is slowed down by the limited durability of alternative catalytic systems at high space velocities. Here, we demonstrate that platinum single atoms on carbon carriers are substantially more stable (up to 1073 K) than their gold counterparts (up to 473 K), enabling facile and scalable preparation and precise tuning of their coordination environment by simple temperature control. By combining kinetic analysis, advanced characterisation, and density functional theory, we assess how the Pt species determines the catalytic performance and thereby identify Pt(II)-Cl as the active site, being three times more active than Pt nanoparticles. Remarkably, we show that Pt single atoms exhibit outstanding stability in acetylene hydrochlorination and surpass the space-time-yields of their gold-based analogues after 25 h time-on-stream, qualifying as candidate for sustainable vinyl chloride production.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa