Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(7): 3127-3133, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33734706

RESUMO

Silicon (Si)-based material is a promising anode material for next-generation lithium-ion batteries (LIBs). Herein, we report the fabrication of a silicon oxide-carbon (SiOx/C) nanocomposite through the reaction between silicon particles with fresh surface and H2O in a mild hydrothermal condition, as well as conducting carbon coating synchronously. We found that controllable oxidation could be realized for Si particles to produce uniform SiOx after the removal of the native passivation layer. The uniform oxidation and conductive coating offered the as-fabricated SiOx/C composite good stability at both particle and electrode level over electrochemical cycling. The as-fabricated SiOx/C composite delivered a high reversible capacity of 1133 mAh g-1 at 0.5 A g-1 with 89.1% capacity retention after 200 cycles. With 15 wt % SiOx/C composite, graphite-SiOx/C hybrid electrode displayed a high reversible specific capacity of 496 mAh g-1 and stable electrochemical cycling with a capacity retention of 90.1% for 100 cycles.

2.
Chem Commun (Camb) ; 60(58): 7467-7470, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38934088

RESUMO

A finely controlled concentration polarization environment was deliberately created to fabricate a three-dimensional ordered Zn metal anode with (002)-dominated planes, which enabled a high-rate aqueous Ni-Zn pouch cell with a high discharge capacity of 187.3 mA h g-1 at 50 C, and a capacity retention of 94.7% and an average Coulombic efficiency of 99.8% for 500 charge/discharge cycles.

3.
Adv Mater ; 36(29): e2401482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695389

RESUMO

Lithium-ion batteries (LIBs), in which lithium ions function as charge carriers, are considered the most competitive energy storage devices due to their high energy and power density. However, battery materials, especially with high capacity undergo side reactions and changes that result in capacity decay and safety issues. A deep understanding of the reactions that cause changes in the battery's internal components and the mechanisms of those reactions is needed to build safer and better batteries. This review focuses on the processes of battery failures, with voltage and temperature as the underlying factors. Voltage-induced failures result from anode interfacial reactions, current collector corrosion, cathode interfacial reactions, overcharge, and over-discharge, while temperature-induced failure mechanisms include SEI decomposition, separator damage, and interfacial reactions between electrodes and electrolytes. The review also presents protective strategies for controlling these reactions. As a result, the reader is offered a comprehensive overview of the safety features and failure mechanisms of various LIB components.

4.
ACS Nano ; 17(19): 19459-19469, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37768556

RESUMO

Low-temperature lithium metal batteries are of vital importance for cold-climate condition applications. Their realization, however, is plagued by the extremely sluggish Li+ transport kinetics in the vicinity of Li metal anode at low temperatures. Different from the widely adopted electrolyte engineering, a functional interphase design concept is proposed in this work to efficiently improve the low-temperature electrochemical reaction kinetics of Li metal anodes. As a proof of concept, we design a hybrid polymer-alloy-fluoride (PAF) interphase featuring numerous gradient fluorinated solid-solution alloy composite nanoparticles embedded in a polymerized dioxolane matrix. Systematic experimental and theoretical investigations demonstrate that the hybrid PAF interphase not only exhibits superior lithiophilicity but also provides abundant ionic conductive pathways for homogeneous and fast Li+ transport at the Li-electrolyte interface. With enhanced interfacial dynamics of Li-ion migration, the as-designed PAF-Li anode works stably for 720 h with low voltage hysteresis and dendrite-free electrode morphology in symmetric cell configurations at -40 °C. The full cells with PAF-Li anode display a commercial-grade capacity of 4.26 mAh cm-2 and high capacity retention of 74.7% after 150 cycles at -20 °C. The rational functional interphase design for accelerating ion-transfer kinetics sheds innovative insights for developing high-areal-capacity and long-lifespan lithium metal batteries at low temperatures.

5.
ACS Nano ; 14(1): 1148-1157, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31834779

RESUMO

Rechargeable lithium-sulfur batteries have attracted tremendous scientific attention owing to their high energy density. However, their practical application is greatly hindered by the notorious shuttling of soluble lithium polysulfide (LPS) intermediates with sluggish redox reactions and uncontrolled precipitation behavior. Herein, we report a semiliquid cathode composed of an active LPS solution/carbon nanofiber (CNF) composite layer, capped with a carbon nanotube (CNT) thin film decorated with metallic Mo nanoclusters that regulate the electrochemical redox reactions of LPS. The trace amount (0.05 mg cm-2) of metallic Mo on the CNT film provides sufficient capturing centers for the chemical immobilization of LPS. Together with physical blocking of LPS by the compact CNT film, free diffusion of LPS is significantly restrained and the self-discharge behavior of the Li-S cell is thus effectively suppressed. Importantly, the metallic Mo nanoclusters enable fast catalytic conversion of LPS and regular deposition of lithium sulfide. As a result, the engineered cathode exhibits a high active sulfur utilization (1401 mAh g-1 at 0.1 C), stable cycling (500 cycles at 1 C with 0.06% decay per cycle), high rate performance (694 mAh g-1 at 5 C), and low self-discharge rate (3% after 72 h of rest). Moreover, a high reversible areal capacity of 4.75 mAh cm-2 is maintained after 100 cycles at 0.2 C for a cathode with a high sulfur loading of 7.64 mg cm-2. This work provides significant insight into the structural and materials design of an advanced sulfur-based cathode that effectively regulates the electrochemical reactions of sulfur species in high-energy Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa