RESUMO
Constitutive heterochromatin, a fundamental feature of eukaryotic nucleus essential for transposon silencing and genome stability, is rebuilt on various types of repetitive DNA in the zygotic genome during early embryogenesis. However, the molecular program underlying this process remains poorly understood. Here, we show that histone H3 lysine 14 acetylation (H3K14ac) is engaged in the reinstallation of constitutive heterochromatin in Drosophila early embryos. H3K14ac partially colocalizes with H3 lysine 9 trimethylation (H3K9me3) and its methyltransferase Eggless/SetDB1 around the mid-blastula transition. Concealing H3K14ac by either antibody injection or maternal knockdown of Gcn5 diminishes Eggless/SetDB1 nuclear foci and reduces the deposition of H3K9me3. Structural analysis reveals that Eggless/SetDB1 recognizes H3K14ac via its tandem Tudor domains, and disrupting the binding interface causes defects in Eggless/SetDB1 distribution and derepression of a subset of transposons. Therefore, H3K14ac, a histone modification normally associated with active transcription, is a crucial component of the early embryonic machinery that introduces constitutive heterochromatic features to the newly formed zygotic genome.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Animais , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Acetilação , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Lisina/metabolismo , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
The healing of human skin wounds is susceptible to perturbation caused by excessive mechanical stretching, resulting in enlarged scars, hypertrophic scars, or even keloids in predisposed individuals. Keloids are fibro-proliferative scar tissues that extend beyond the initial wound boundary, consisting of the actively progressing periphery and the quiescent center. The stretch-associated outgrowth and enhanced angiogenesis are two features of the periphery of keloids. However, which cell population is responsible for transducing the mechanical stimulation to the progression of keloids remains unclear. Herein, through integrative analysis of single-cell RNA sequencing of keloids, we identified CD74+ fibroblasts, a previously unappreciated subset of fibroblasts with pro-angiogenic and stretch-induced proliferative capacities, as a key player in stretch-induced progression of keloids. Immunostaining of keloid cryosections depicted a predominant distribution of CD74+ fibroblasts in the periphery, interacting with the vasculature. In vitro tube formation assays on purified CD74+ fibroblasts ascertained their pro-angiogenic function. BrdU assays revealed that these cells proliferate upon stretching, through PIEZO1-mediated calcium influx and the downstream ERK and AKT signaling. Collectively, our findings propose a model wherein CD74+ fibroblasts serve as pivotal drivers of stretch-induced keloid progression, fueled by their proliferative and pro-angiogenic activities. Targeting the attributes of CD74+ fibroblasts holds promise as a therapeutic strategy for the management of keloids.
Assuntos
Proliferação de Células , Fibroblastos , Queloide , Neovascularização Patológica , Queloide/metabolismo , Queloide/patologia , Humanos , Fibroblastos/metabolismo , Neovascularização Patológica/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Estresse Mecânico , Masculino , Feminino , Células Cultivadas , Adulto , Angiogênese , Antígenos de Histocompatibilidade Classe IIRESUMO
There are >170 naturally occurring RNA chemical modifications, with both known and unknown biological functions. Analytical methods for detecting chemical modifications and for analyzing their effects are relatively limited and have had difficulty keeping pace with the demand for RNA chemical biology and biochemistry research. Some modifications can affect the ability of RNA to hybridize with its complementary sequence or change the selectivity of base pairing. Here, we investigate the use of affinity-based DNA nanoswitches to resolve energetic differences in hybridization. We found that a single m3C modification can sufficiently destabilize hybridization to abolish a detection signal, while an s4U modification can selectively hybridize with G over A. These results establish proof of concept for using DNA nanoswitches to detect certain RNA modifications and analyzing their effects in base pairing stability and specificity.
Assuntos
DNA , RNA , Pareamento de Bases , Sequência de Bases , DNA/química , Hibridização de Ácido Nucleico , RNA/químicaRESUMO
BACKGROUND: SERPINB2, a biomarker of Type-2 (T2) inflammatory processes, has been described in the context of asthma. Chronic rhinosinusitis with nasal polyps (CRSwNP) is also correlated with T2 inflammation and elevated 15LO1 induced by IL-4/13 in nasal epithelial cells. The aim of this study was to evaluate the expression and location of SERPINB2 in nasal epithelial cells (NECs) and determine whether SERPINB2 regulates 15LO1 and downstream T2 markers in NECs via STAT6 signalling. METHODS: SERPINB2 gene expression in bulk and single-cell RNAseq database was analysed by bioinformatics analysis. SERPINB2, 15LO1 and other T2 markers were evaluated from CRSwNP and HCs NECs. The colocalization of SERPINB2 and 15LO1 was evaluated by immunofluorescence. Fresh NECs were cultured at an air-liquid interface with or without IL-13, SERPINB2 Dicer-substrate short interfering RNAs (DsiRNAs) transfection, exogenous SERPINB2, 15-HETE recombinant protein and pSTAT6 inhibitors. 15LO1, 15-HETE and downstream T2 markers were analysed by qRT-PCR, western blot and ELISA. RESULTS: SERPINB2 expression was increased in eosinophilic nasal polyps compared with that in noneosinophilic nasal polyps and control tissues and positively correlated with 15LO1 and other downstream T2 markers. SERPINB2 was predominantly expressed by epithelial cells in NP tissue and was colocalized with 15LO1. In primary NECs in vitro, SERPINB2 expression was induced by IL-13. Knockdown or overexpression SERPINB2 decreased or enhanced expression of 15LO1 and 15-HETE in NECs, respectively, in a STAT6-dependent manner. SERPINB2 siRNA also inhibited the expression of the 15LO1 downstream genes, such as CCL26, POSTN and NOS2. STAT6 inhibition similarly decreased SERPINB2-induced 15LO1. CONCLUSIONS: SERPINB2 is increased in NP epithelial cells of eosinophilic CRSwNP (eCRSwNP) and contributes to T2 inflammation via STAT6 signalling. SERPINB2 could be considered a novel therapeutic target for eCRSwNP.
Assuntos
Células Epiteliais , Pólipos Nasais , Rinite , Fator de Transcrição STAT6 , Transdução de Sinais , Sinusite , Humanos , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/genética , Pólipos Nasais/metabolismo , Pólipos Nasais/patologia , Pólipos Nasais/imunologia , Sinusite/metabolismo , Sinusite/patologia , Sinusite/imunologia , Rinite/metabolismo , Rinite/patologia , Doença Crônica , Células Epiteliais/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/genética , Feminino , Masculino , Quimiocina CCL26/metabolismo , Quimiocina CCL26/genética , Adulto , Pessoa de Meia-Idade , Eosinofilia/metabolismo , Eosinofilia/patologia , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Mucosa Nasal/imunologia , Regulação da Expressão Gênica , RinossinusiteRESUMO
Pearl of Csaba (PC) is a valuable backbone parent for early-ripening grapevine (Vitis vinifera) breeding, from which many excellent early ripening varieties have been bred. However, the genetic basis of the stable inheritance of its early ripening trait remains largely unknown. Here, the pedigree, consisting of 40 varieties derived from PC, was re-sequenced for an average depth of â¼30×. Combined with the resequencing data of 24 other late-ripening varieties, 5,795,881 high-quality single nucleotide polymorphisms (SNPs) were identified following a strict filtering pipeline. The population genetic analysis showed that these varieties could be distinguished clearly, and the pedigree was characterized by lower nucleotide diversity and stronger linkage disequilibrium than the non-pedigree varieties. The conserved haplotypes (CHs) transmitted in the pedigree were obtained via identity-by-descent analysis. Subsequently, the key genomic segments were identified based on the combination analysis of haplotypes, selective signatures, known ripening-related quantitative trait loci (QTLs), and transcriptomic data. The results demonstrated that varieties with a superior haplotype, H1, significantly (one-way ANOVA, P < 0.001) exhibited early grapevine berry development. Further analyses indicated that H1 encompassed VIT_16s0039g00720 encoding a folate/biopterin transporter protein (VvFBT) with a missense mutation. VvFBT was specifically and highly expressed during grapevine berry development, particularly at veraison. Exogenous folate treatment advanced the veraison of "Kyoho". This work uncovered core haplotypes and genomic segments related to the early ripening trait of PC and provided an important reference for the molecular breeding of early-ripening grapevine varieties.
Assuntos
Vitis , Vitis/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Transcriptoma , Frutas/metabolismo , GenômicaRESUMO
Aerosol intensive optical properties, including lidar ratio and particle depolarization ratio, are of vital importance for aerosol typing. However, aerosol intensive optical properties at near-infrared wavelength are less exploited by atmospheric lidar measurements, because of the comparably small backscatter cross section of Raman-scattering and a low efficiency of signal detection compared to what is commonly available at 355â nm and 532â nm. To obtain accurate optical properties of aerosols at near-infrared wavelength, we considered three factors: Raman-spectra selection, detector selection, and interference-filter optimization. Rotational Raman scattering has been chosen for Raman signal detection, because of the higher cross-section compared to vibrational Raman scattering. The optimization of the properties of the interference filter are based on a comprehensive consideration of both signal-to-noise ratio and temperature dependence of the simulated lidar signals. The interference filter that has eventually been chosen uses the central wavelength at 1056â nm and a filter bandwidth (full-width-at-half-maximum) of 6â nm. We built a 3-channel 1064-nm rotational Raman lidar. In this paper two methods are proposed to test the temperature dependence of the signal-detection unit and to evaluate the quality of the Raman signals. We performed two measurements to test the quality of the detection channel: cirrus clouds in the free troposphere and aerosols in the planetary boundary layer. Our analysis of the measured Raman signals shows a negligible temperature dependence of the Raman signals in our system. For cirrus measurements, the Raman signal profile did not show crosstalk even for the case of strong elastic backscatter from clouds, which was about 100 times larger than Rayleigh scattering in the case considered here. The cirrus-mean extinction-to-backscatter ratio (lidar ratio) was 27.8 ± 10.0 sr (1064â nm) at a height of 10.5-11.5â km above ground. For the aerosols in the planetary boundary layer, we found the mean lidar ratio of 38.9 ± 7.0 sr at a height of 1.0-3.0â km above ground.
RESUMO
We evaluated the relationship of bone mineral density (BMD) by computed tomography (CT), to predict fractures in a multi-ethnic population. We demonstrated that vertebral and hip fractures were more likely in those patients with low BMD. This is one of the first studies to demonstrate that CT BMD derived from thoracic vertebrae can predict future hip and vertebral fractures. PURPOSE/INTRODUCTION: Osteoporosis affects an enormous number of patients, of all races and both sexes, and its prevalence increases as the population ages. Few studies have evaluated the association between the vertebral trabecular bone mineral density(vBMD) and osteoporosis-related hip fracture in a multiethnic population, and no studies have demonstrated the predictive value of vBMD for fractures. METHOD: We sought to determine the predictive value of QCT-based trabecular vBMD of thoracic vertebrae derived from coronary artery calcium scan for hip fractures in the Multi-Ethnic Study of Atherosclerosis(MESA), a nationwide multicenter cohort included 6814 people from six medical centers across the USA and assess if low bone density by QCT can predict future fractures. Measures were done using trabecular bone measures, adjusted for individual patients, from three consecutive thoracic vertebrae (BDI Inc, Manhattan Beach CA, USA) from non-contrast cardiac CT scans. RESULTS: Six thousand eight hundred fourteen MESA baseline participants were included with a mean age of 62.2 ± 10.2 years, and 52.8% were women. The mean thoracic BMD is 162.6 ± 46.8 mg/cm3 (95% CI 161.5, 163.7), and 27.6% of participants (n = 1883) had osteoporosis (T-score 2.5 or lower). Over a median follow-up of 17.4 years, Caucasians have a higher rate of vertebral fractures (6.9%), followed by Blacks (4.4%), Hispanics (3.7%), and Chinese (3.0%). Hip fracture patients had a lower baseline vBMD as measured by QCT than the non-hip fracture group by 13.6 mg/cm3 [P < 0.001]. The same pattern was seen in the vertebral fracture population, where the mean BMD was substantially lower 18.3 mg/cm3 [P < 0.001] than in the non-vertebral fracture population. Notably, the above substantial relationship was unaffected by age, gender, race, BMI, hypertension, current smoking, medication use, or activity. Patients with low trabecular BMD of thoracic vertebrae showed a 1.57-fold greater risk of first hip fracture (HR 1.57, 95% CI 1.38-1.95) and a nearly threefold increased risk of first vertebral fracture (HR 2.93, 95% CI 1.87-4.59) compared to normal BMD patients. CONCLUSION: There is significant correlation between thoracic trabecular BMD and the incidence of future hip and vertebral fracture. This study demonstrates that thoracic vertebrae BMD, as measured on cardiac CT (QCT), can predict both hip and vertebral fractures without additional radiation, scanning, or patient burden. Osteopenia and osteoporosis are markedly underdiagnosed. Finding occult disease affords the opportunity to treat the millions of people undergoing CT scans every year for other indications.
Assuntos
Densidade Óssea , Osso Esponjoso , Fraturas do Quadril , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vértebras Torácicas , Tomografia Computadorizada por Raios X , Humanos , Densidade Óssea/fisiologia , Feminino , Masculino , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/fisiopatologia , Vértebras Torácicas/lesões , Fraturas por Osteoporose/fisiopatologia , Fraturas por Osteoporose/etnologia , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/etiologia , Idoso , Fraturas da Coluna Vertebral/fisiopatologia , Fraturas da Coluna Vertebral/etnologia , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/epidemiologia , Fraturas da Coluna Vertebral/etiologia , Fraturas do Quadril/fisiopatologia , Fraturas do Quadril/etnologia , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/etiologia , Fraturas do Quadril/epidemiologia , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiopatologia , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Valor Preditivo dos Testes , Osteoporose/etnologia , Osteoporose/fisiopatologia , Osteoporose/diagnóstico por imagem , Medição de Risco/métodos , IncidênciaRESUMO
BACKGROUND: A higher Life's Essential 8 (LE8)-based cardiovascular health (CVH) has been reported to be associated with a lower risk of both all-cause mortality and cardio-cerebrovascular diseases (CCVDs) related mortality in adults in the United States. At the same time, multiple studies have shown a significant negative association of CVH with the risk of stroke and CCVDs. Since no research has investigated the applicability of the LE8 in stroke patients, this study aimed to explore the association of LE8 with all-cause mortality and cardio-cerebrovascular mortality in stroke patients. METHODS: Data of patients were extracted from the National Health and Nutrition Examination Surveys (NHANES) database in 2007-2018 in this retrospective cohort study. Weighted univariate and multivariate COX regression analyses were utilized to investigate the associations of LE8 with all-cause mortality and cardio-cerebrovascular mortality. We further explored these relationships in subgroups of age, gender, body mass index (BMI), cancer, congestive heart failure (CHF), and coronary heart disease (CHD). The evaluation indexes were hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: Among the eligible patients, 278 died from all-cause and 89 (8.38%) of them died due to CCVDs. After adjusting for covariates, patients with LE8 score ≥ 58.75 seemed to have both lower risk of all-cause mortality (HR = 0.46, 95%CI: 0.31-0.69) and cardio-cerebrovascular mortality (HR = 0.51, 95%CI: 0.26-0.98), comparing to those with LE8 score < 48.123. Higher LE8 scores were associated with lower risk of all-cause mortality in patients aged < 65 years old, without cancer, and whatever the gender, BMI, CHF or CHD conditions (all P < 0.05). The relationships between high LE8 scores and low cardio-cerebrovascular mortality risk were only found in age < 65 years old and non-cancer subgroups (all P < 0.05). CONCLUSION: A higher LE8 score was associated with lower risk of both all-cause mortality and cardio-cerebrovascular mortality in patients with stroke, which may provide some reference for risk management and prognosis improvement in stoke. However, more evidences are needed to verify this beneficial role of high LE8 score in stroke prognosis.
Assuntos
Causas de Morte , Inquéritos Nutricionais , Acidente Vascular Cerebral , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Medição de Risco , Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/diagnóstico , Fatores de Risco , Prognóstico , Estados Unidos/epidemiologia , Fatores de Tempo , Bases de Dados Factuais , Nível de Saúde , Fatores de Proteção , Adulto , Valor Preditivo dos Testes , Indicadores Básicos de Saúde , Idoso de 80 Anos ou mais , Técnicas de Apoio para a DecisãoRESUMO
OBJECTIVE: Nonalcoholic fatty liver disease not only shares multiple risk factors with cardiovascular disease but also independently predicts its increased risk and related outcomes. Here, we evaluate reproducibility of 3-dimensional (3D) liver volume segmentation method to identify fatty liver on noncontrast cardiac computed tomography (CT) and compare measures with previously validated 2-dimensional (2D) segmentation CT criteria for the measurement of liver fat. METHODS: The study included 68 participants enrolled in the EVAPORATE trial and underwent serial noncontrast cardiac CT. Liver attenuation < 40 Hounsfield units (HU) was used for diagnosing fatty liver, as done in the MESA study. Two-dimensional and 3D segmentation of the liver were performed by Philips software. Bland-Altman plot analysis was used to assess reproducibility. RESULTS: Interreader reproducibility of 3D liver mean HU measurements was 96% in a sample of 111 scans. Reproducibility of 2D and 3D liver mean HU measurements was 93% in a sample of 111 scans. Reproducibility of change in 2D and 3D liver mean HU was 94% in 68 scans. Kappa, a measure of agreement in which the 2D and 3D measures both identified fatty liver, was excellent at 96.4% in 111 scans. CONCLUSIONS: Fatty liver can be reliably diagnosed and measured serially in a stable and reproducible way by 3D liver segmentation of noncontrast cardiac CT scans. Future studies need to explore the sensitivity and stability of measures for low liver fat content by 3D segmentation, over the current 2D methodology. This measure can serve as an imaging biomarker to understand mechanistic correlations between atherosclerosis, fatty liver, and cardiovascular disease risk.
Assuntos
Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Humanos , Doenças Cardiovasculares/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Ensaios Clínicos como AssuntoRESUMO
BACKGROUND: Virus, particularly respiratory tract virus infection is likely to co-occur in children with community-acquired pneumonia (CAP). Study focusing on the association between common viruses coinfection and children with CAP is rare. We aimed to study the association between seven common viruses coinfection and clinical/laboratory indexes in children with CAP. METHODS: Six hundred and eighty-four CAP cases from our hospital were enrolled retrospectively. Seven common viruses, including influenza A (FluA), influenza B (FluB), human parainfluenza virus (HPIV), Esptein-Barr virus (EBV), coxsackie virus (CoxsV), cytomegalovirus (CMV), and herpes simplex virus (HSV) were investigated for their associations with CAP. We analyzed the differences of hospitalization days, white blood cell (WBC), c-reactive protein (CRP), platelet (PLT), erythrocyte sedimentation rate (ESR), procalcitonin (PCT), urine red blood cell (uRBC), blood urea nitrogen (BUN), serum creatinine (Scr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK) and creatine kinase isoenzyme (CKMB) among different viruses coinfection groups by using one-way ANOVA analysis. The differences of clinical/laboratory indexes between ordinary and severe pneumonia groups, as well as non-virus vs multi co-infection viruses groups, and single vs multi co-infection viruses groups by using independent samples T test. Receiver operating characteristic (ROC) curve analyses were applied to test the the predictive value of the clinical/laboratory parameters for the risk of viruses coinfections among CAP. Binary logistic analysis was performed to test the association between various indexes and viruses co-infection. RESULTS: Eighty-four multiple viruses coinfections yielded different prognosis compared with that in 220 single virus coinfection. CMV coinfection was associated with longest hospitalization days, highest ALT, AST and CKMB level. HSV coinfection was associated with highest WBC count, CRP, ESR, and BUN. EBV coinfection was associated with highest PLT and PCT level. FluB coinfection was associated with highest Scr level. CoxsV coinfection was associated with highest uRBC, LDH and CK level. ROC curve analyses showed that CK had the largest area under the curve (AUC: 0.672, p < 10-4) for the risk of viruses coinfections risk in CAP. Significant association between PLT, uRBC, BUN, CK, and CKMB and virus coinfection risk in CAP was observed. CONCLUSIONS: Multiple viruses coinfections indicated different prognosis. Different viruses coinfection yielded varying degrees of effects on the cardiac, liver, kidney and inflamatory injury in CAP. The alterations of clinical/laboratory parameters, particularly CK may be associated with the risk of viruses coinfections in CAP.
Assuntos
Coinfecção , Infecções Comunitárias Adquiridas , Pneumonia Viral , Humanos , Infecções Comunitárias Adquiridas/virologia , Infecções Comunitárias Adquiridas/epidemiologia , Coinfecção/epidemiologia , Feminino , Masculino , Estudos Retrospectivos , Pré-Escolar , Criança , Lactente , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologiaRESUMO
OBJECTIVES: Uncoupling protein 2 (UCP2) was involved in the pathogenesis and development of kidney diseases. Many signaling pathways and factors regulate the expression of UCP2. We aimed to investigate the precise role of UCP2 and its signaling pathways in kidney diseases. METHODS: We summarized the available evidence to yield a more detailed conclusion of the signal transduction pathways of UCP2 and its role in the development and progression of kidney diseases. RESULTS: UCP2 could interact with 14.3.3 family proteins, mitochondrial phospholipase iPLA2γ, NMDAR, glucokinase, PPARγ2. There existed a signaling pathway between UCP2 and NMDAR, PPARγ. UCP2 can inhibit the ROS production, inflammatory response, and apoptosis, which may protect against renal injury, particularly AKI. Meanwhile UCP2 can decrease ATP production and inhibit the secretion of insulin, which may alleviate chronic renal damages, such as diabetic nephropathy and kidney fibrosis. CONCLUSIONS: Homeostasis of UCP2 is helpful for kidney health. UCP2 may play different roles in different kinds of renal injury.
Assuntos
Transdução de Sinais , Proteína Desacopladora 2 , Proteína Desacopladora 2/metabolismo , Humanos , Nefropatias/metabolismo , Animais , Rim/metabolismo , Rim/patologia , Apoptose , Espécies Reativas de Oxigênio/metabolismoRESUMO
Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.
Assuntos
Cucurbita , Retroelementos , Produtos Agrícolas , Fenótipo , Filogenia , Retroelementos/genética , Cucurbita/genéticaRESUMO
A model was developed to simulate lidar signals and quantify the relative errors of retrieved aerosol backscattering. The results show that a 1064â nm atmospheric aerosol lidar has a small relative error, which can be attributed to the presence of a sufficient molecular signal to facilitate calibration. However, the quantum efficiency of 1064â nm photons using silicon avalanche photodiode detectors is about 2%. To improve the quantum efficiency at 1064â nm band, this study used up-conversion techniques to convert 1064-nm photons to 631-nm photons, optimizing the power of the pump laser and the operating temperature of the waveguide to enable detection at higher efficiencies, up to 18.8%. The up-conversion atmospheric lidar is designed for optimal integration and robustness with a fiber-coupled optical path and a 50 mm effective aperture telescope. This greatly improves the performance of the 1064â nm atmospheric aerosol lidar, which enables aerosol detection up to 25â km (equivalent to 8.6â km altitude) even at a single laser pulse energy of 110 µJ. Compared to silicon avalanche photodiode detectors, up-conversion single photon detectors exhibit superior performance in detecting lidar echo signals, even in the presence of strong background noise during daytime.
RESUMO
Multi-wavelength Raman lidar has been widely used in profiling aerosol optical properties. The accuracy of measured aerosol optical properties largely depends on sophisticated lidar data retrieval algorithms. Commonly to retrieve aerosol optical properties of Raman lidar, the extinction-related Ångström exponent (EAE) is assumed (to be 1). This value usually generally differs from the true value (called EAE deviation) and adds uncertainty to the retrieved aerosol optical properties. Lidar-signal noise and EAE-deviation are two important error sources for retrieving aerosol optical properties. As the measurement accuracy of Raman lidar has been greatly improved in recent years, the influence of signal noise on retrieval results becomes relatively small, and the uncertainty of retrieved aerosol optical properties caused by an EAE-deviation becomes nonnegligible, especially in scenes that EAE deviation is large. In this study, an iteration retrieval algorithm is proposed to obtain more reliable EAE based on multi-wavelength Raman lidar. Results from this iteration are more precise values of aerosol optical properties. Three atmospheric scenarios where aerosol distribution and the values of EAE vary widely were simulated with a Monte Carlo method to analyze the characteristics and robustness of the iterative algorithm. The results show that the proposed iterative algorithm can eliminate the systematic errors of aerosol optical properties retrieved by traditional retrieval method. The EAEs after iteration does converge to the true value, and the accuracy of aerosol optical properties can be greatly improved, especially for the particle backscatter coefficient and lidar ratio, which has been improved by more than 10% in most cases, and even more than 30%. In addition, field observations data of a three-wavelength Raman lidar are analyzed to illustrate the necessity and reliability of the proposed iterative retrieval algorithm.
RESUMO
BACKGROUND: The ClaH3K4s and ClaH3K27s gene families are subfamilies of the SET family, each with a highly conserved SET structure domain and a PHD structural domain. Both participate in histone protein methylation, which affects the chromosome structure and gene expression, and is essential for fruit growth and development. METHODS AND RESULTS: In order to demonstrate the structure and expression characteristics of ClaH3K4s and ClaH3K27s in watermelon, members of the watermelon H3K4 and H3K27 gene families were identified, and their chromosomal localization, gene structure, and protein structural domains were analyzed. The phylogeny and covariance of the gene families with other species were subsequently determined, and the expression profiles were obtained by performing RNA-Seq and qRT-PCR. The watermelon genome had five H3K4 genes with 3207-8043 bp nucleotide sequence lengths and four H3K27 genes with a 1107-5499 bp nucleotide sequence. Synteny analysis revealed the close relationship between watermelon and cucumber, with the majority of members displaying a one-to-one covariance. Approximately half of the 'Hua-Jing 13 watermelon' ClaH3K4s and ClaH3K27s genes were expressed more in the late fruit development stages, while the changes were minimal for the remaining half. H3K4-2 expression was observed to be slightly greater on day 21 compared to other periods. Moreover, ClaH3K27-1 and ClaH3K27-2 were hardly expressed throughout the developing period, and ClaH3K27-4 exhibited the highest expression. CONCLUSION: These results serve as a basis for further functional characterization of the H3K4 and H3K27 genes in the fruit development of watermelon.
Assuntos
Citrullus , Citrullus/genética , Frutas/metabolismo , Sequência de Bases , Reação em Cadeia da Polimerase , Sintenia , Regulação da Expressão Gênica de Plantas/genética , FilogeniaRESUMO
BACKGROUND AND AIMS: Previously, osteoporosis and coronary artery disease were considered unrelated. However, beyond age, these two conditions appear to share common etiologies that are not yet fully understood. We examined the relationship between thoracic spine bone mineral density (BMD) and severity of coronary artery calcium (CAC) score. METHODS AND RESULTS: MESA is a prospective cohort study of 6814 men and women between the ages of 45 and 84 years, without clinical cardiovascular disease. This study included participants who underwent non-contrast chest CT scans to determine CAC score and thoracic spine BMD. The thoracic spine BMD was categorized into osteoporosis (defined as T score: ≤ -2.5), osteopenia (T-score between: -2.5 and -1) and normal BMD (T-score ≥ -1). There were 3392 subjects who had CAC >0 at baseline. The prevalence of CAC >0 was 36% in normal BMD group, 49% in the osteopenia and 68% in osteoporosis group. After adjusting for risk factors of atherosclerosis, in multivariate regression models we found a significant association between CAC and osteoporosis (OR: 1.40, 95% CI 1.16-1.69, p value < 0.0004). Furthermore, we stratified our results by gender and found a statistically significant association in both men and women. CONCLUSION: Results from this cross-sectional analysis of a large population based ethnically diverse cohort indicate a significant inverse relationship between thoracic BMD and CAC in both genders independent of other cardiovascular risk factors. Future studies need to explore the underlying pathophysiological mechanisms relating BMD and coronary artery calcification.
Assuntos
Aterosclerose , Doenças Ósseas Metabólicas , Doença da Artéria Coronariana , Osteoporose , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/fisiologia , Cálcio , Estudos Prospectivos , Vasos Coronários/diagnóstico por imagem , Estudos Transversais , Osteoporose/diagnóstico por imagem , Osteoporose/epidemiologia , Aterosclerose/diagnóstico por imagem , Aterosclerose/epidemiologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Fatores de Risco , Cálcio da DietaRESUMO
Vortex beam has the potential to significantly improve the performance of lidar (light detection and ranging) and optical communication applications in which low signal-to-noise ratio (SNR) limits the detection/transmission range. The vortex beam method allows for spatially separating the coherent light (laser signal) from the incoherent light (the background radiation and multiple-scattered light) of the received signal. This paper presents results of a simulation model in which the optical vortex acts as an optical filter. We present instrument parameters that describe the filtering effect, e.g., the form of the vortex phase modulation function, the topological charge of the vortex and the focal length of a virtual Fresnel lens that is used for optical filtering. Preliminary experimental results show that the background radiation within the spectral filter bandwidth can be suppressed by as much as 95%. At the same time, we retain 97% of the coherent laser signal. Our simulation model will be used in future design of lidar instruments and optical communication systems in which the optical vortex method is used for optical filtering of the detected signals.
RESUMO
A compact polarization Raman lidar has been designed and constructed for using it for atmospheric correction measurements during satellite optical sensor calibration in areas with high altitude and extremely low aerosol loading. The parameters of this lidar, such as laser wavelength, telescope diameter and interference filter bandwidth, were simulated and optimized for the best observation performance. The instrument has low weight, is small in size, and requires air cooling instead of commonly used water-cooling of the laser. Thus, the instrument is suitable for autonomous operation in remote sites. The lidar prototype was installed in Lijiang (26°43' N, 100°01' E), China, a potential observation site for calibrations of optical sensors of satellites. This observation site has been shown to be an appropriate place for remote sensing and satellite calibration activities with low aerosol loading, thin air and a comparably high proportion of cloud-free days. A field campaign carried out between November 2019 and April 2020 allowed for thoroughly testing the instruments. The results of test observations show that complete overlap between emitted laser beam and field-of-view of the receiver unit is achieved at relatively low heights above ground. The measurement accuracy is comparably high. Thus, this instrument is suitable for operating in areas with relatively clean atmospheric conditions.
RESUMO
OBJECTIVE: Previous studies have shown Interleukin (IL)-17A as an important contributor to the development of severe asthma, which is mainly characterized by neutrophilic inflammation and less response to corticosteroids. Consequently, the IL-17A-neutrophil axis could be a potential therapeutic target. Previously, we constructed a recombinant Mycobacterium smegmatis (rMS) expressing fusion protein Ag85A-IL-17A, and confirmed it could induce production of IL-17A autoantibody in vivo. This study uses a murine model of neutrophilic asthma to further investigate the effects of rMS on airway inflammation. METHODS: DO11.10 mice were divided into four groups: phosphate buffered saline (PBS), asthma, rMS and MS. This murine model of neutrophilic asthma was established with ovalbumin (OVA) challenge, whereby PBS, rMS and MS were administered intranasally. Anti-inflammatory effects on inflammatory cell infiltration and expression of inflammatory mediators in bronchoalveolar lavage fluid (BALF) were evaluated, along with histopathological changes in lung tissues. RESULTS: A sustained high-titer IL-17A autoantibody was detected in sera of the rMS group. Compared to the asthma group, the number of neutrophils, IL-17A, CXCL-1 levels and MPO activity in the rMS group were all significantly reduced (p < 0.01). Histological analysis showed rMS remarkably suppressed inflammatory infiltration around bronchia. The inflammation score and the mucus score in the rMS group were both significantly lower than those in the asthma group (p < 0.001). CONCLUSION: rMS ameliorated airway inflammation in mice with neutrophilic asthma caused by inducing IL-17A autoantibody and regulating the IL-17A-neutrophil axis, thus offering a possible novel treatment for neutrophilic asthma.
Assuntos
Asma , Interleucina-17 , Corticosteroides/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Mediadores da Inflamação , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium smegmatis/metabolismo , Ovalbumina/farmacologia , Fosfatos/efeitos adversosRESUMO
The N4-methylation of cytidine (m4C and m42C) in RNA plays important roles in both bacterial and eukaryotic cells. In this work, we synthesized a series of m4C and m42C modified RNA oligonucleotides, conducted their base pairing and bioactivity studies, and solved three new crystal structures of the RNA duplexes containing these two modifications. Our thermostability and X-ray crystallography studies, together with the molecular dynamic simulation studies, demonstrated that m4C retains a regular C:G base pairing pattern in RNA duplex and has a relatively small effect on its base pairing stability and specificity. By contrast, the m42C modification disrupts the C:G pair and significantly decreases the duplex stability through a conformational shift of native Watson-Crick pair to a wobble-like pattern with the formation of two hydrogen bonds. This double-methylated m42C also results in the loss of base pairing discrimination between C:G and other mismatched pairs like C:A, C:T and C:C. The biochemical investigation of these two modified residues in the reverse transcription model shows that both mono- or di-methylated cytosine bases could specify the C:T pair and induce the G to T mutation using HIV-1 RT. In the presence of other reverse transcriptases with higher fidelity like AMV-RT, the methylation could either retain the normal nucleotide incorporation or completely inhibit the DNA synthesis. These results indicate the methylation at N4-position of cytidine is a molecular mechanism to fine tune base pairing specificity and affect the coding efficiency and fidelity during gene replication.