RESUMO
BACKGROUND: Studies have highlighted a possible crosstalk between the pathogeneses of COVID-19 and systemic lupus erythematosus (SLE); however, the interactive mechanisms remain unclear. We aimed to elucidate the impact of COVID-19 on SLE using clinical information and the underlying mechanisms of both diseases. METHODS: RNA-seq datasets were used to identify shared hub gene signatures between COVID-19 and SLE, while genome-wide association study datasets were used to delineate the interaction mechanisms of the key signaling pathways. Finally, single-cell RNA-seq datasets were used to determine the primary target cells expressing the shared hub genes and key signaling pathways. RESULTS: COVID-19 may affect patients with SLE through hematologic involvement and exacerbated inflammatory responses. We identified 14 shared hub genes between COVID-19 and SLE that were significantly associated with interferon (IFN)-I/II. We also screened and obtained four core transcription factors related to these hub genes, confirming the regulatory role of the IFN-I/II-mediated Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway on these hub genes. Further, SLE and COVID-19 can interact via IFN-I/II and IFN-I/II receptors, promoting the levels of monokines, including interleukin (IL)-6/10, tumor necrosis factor-α, and IFN-γ, and elevating the incidence rate and risk of cytokine release syndrome. Therefore, in SLE and COVID-19, both hub genes and core TFs are enriched within monocytes/macrophages. CONCLUSIONS: The interaction between SLE and COVID-19 promotes the activation of the IFN-I/II-triggered JAK-STAT signaling pathway in monocytes/macrophages. These findings provide a new direction and rationale for diagnosing and treating patients with SLE-COVID-19 comorbidity.
Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/genética , Lúpus Eritematoso Sistêmico/genética , SARS-CoV-2/fisiologia , Feminino , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Masculino , Transcriptoma , Perfilação da Expressão Gênica , MultiômicaRESUMO
Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.
Assuntos
Epigênese Genética , Humanos , Animais , RNA/genética , RNA/metabolismo , Neoplasias Gastrointestinais/genética , Processamento Pós-Transcricional do RNA , Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/terapiaRESUMO
PURPOSE: Postoperative early recurrence (ER) leads to a poor prognosis for intrahepatic cholangiocarcinoma (ICC). We aimed to develop machine learning (ML) radiomics models to predict ER in ICC after curative resection. METHODS: Patients with ICC undergoing curative surgery from three institutions were retrospectively recruited and assigned to training and external validation cohorts. Preoperative arterial and venous phase contrast-enhanced computed tomography (CECT) images were acquired and segmented. Radiomics features were extracted and ranked through their importance. Univariate and multivariate logistic regression analysis was used to identify clinical characteristics. Various ML algorithms were used to construct radiomics-based models, and the predictive performance was evaluated by receiver operating characteristic curves, calibration curves, and decision curve analysis. RESULTS: 127 patients were included for analysis: 90 patients in the training set and 37 patients in the validation set. Ninety-two patients (72.4%) experienced recurrence, including 71 patients exhibiting ER. Male sex, microvascular invasion, TNM stage, and serum CA19-9 were identified as independent risk factors for ER, with the corresponding clinical model having a poor predictive performance (AUC of 0.685). Fifty-seven differential radiomics features were identified, and the 10 most important features were utilized for modelling. Seven ML radiomics models were developed with a mean AUC of 0.87 ± 0.02, higher than the clinical model. Furthermore, the clinical-radiomics models showed similar predictive performance to the radiomics models (AUC of 0.87 ± 0.03). CONCLUSION: ML radiomics models based on CECT are valuable in predicting ER in ICC.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Masculino , Estudos Retrospectivos , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/cirurgia , Aprendizado de Máquina , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/cirurgiaRESUMO
BACKGROUND: A growing number of studies have shown that prenatal exposure to chemical and non-chemical stressors has effects on fetal growth. The co-exposure of both better reflects real-life exposure patterns. However, no studies have included air pollutants and pregnancy-related anxiety (PrA) as mixtures in the analysis. METHOD: Using the birth cohort study method, 576 mother-child pairs were included in the Ma'anshan Maternal and Child Health Hospital. Evaluate the exposure levels of six air pollutants during pregnancy using inverse distance weighting (IDW) based on the pregnant woman's residential address and air pollution data from monitoring stations. Prenatal anxiety levels were assessed using the PrA Questionnaire. Generalized linear regression (GLR), quantile g-computation (QgC) and bayesian kernel machine regression (BKMR) were used to assess the independent or combined effects of air pollutants and PrA on birth weight for gestational age z-score (BWz). RESULT: The results of GLR indicate that the correlation between the six air pollutants and PrA with BWz varies depending on the different stages of pregnancy and pollutants. The QgC shows that during trimester 1, when air pollutants and PrA are considered as a whole exposure, an increase of one quartile is significantly negatively correlated with BWz. The BKMR similarly indicates that during trimester 1, the combined exposure of air pollutants and PrA is moderately correlated with a decrease in BWz. CONCLUSION: Using the method of analyzing mixed exposures, we found that during pregnancy, the combined exposure of air pollutants and PrA, particularly during trimester 1, is associated with BWz decrease. This supports the view that prenatal exposure to chemical and non-chemical stressors has an impact on fetal growth.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Peso ao Nascer , Estudos de Coortes , Estudos Prospectivos , Teorema de Bayes , Exposição Materna , Poluição do Ar/análise , Poluentes Atmosféricos/análise , China , Ansiedade , Material Particulado/análiseRESUMO
BACKGROUND: The placenta serves as the sole maternal organ responsible for transmitting nutrients to the fetus, playing a crucial role in supporting standard fetal growth and development. To date, only a small number of studies have investigated the impact of maternal gestational weight gain and lipid concentrations on placental development. This study aimed to explore the influence of weight gain during pregnancy and lipid levels in the second trimester on placental weight, volume, and the placental weight ratio. METHODS: This birth cohort study encompassed 1,358 mother-child pairs. Placental data for each participant was gathered immediately post-delivery, and the study incorporated data on gestational weight gain throughout pregnancy and lipid profiles from the mid-trimester. A linear regression model was employed to assess the correlations between gestational weight gain, mid-trimester lipid levels, and metrics such as placental weight, placental volume, and the placental-to-birth weight ratio (PFR). RESULTS: In the study groups of pre-pregnancy underweight, normal weight, and overweight, the placental weight increased by 4.93 g (95% CI: 1.04-8.81), 2.52 g (95% CI: 1.04-3.99), and 3.30 g (95% CI: 0.38-6.22) per 1 kg of gestational weight gain, respectively. Within the pre-pregnancy underweight and normal weight groups, the placental volume increased by 6.79 cm^3 (95% CI: 3.43-10.15) and 2.85 cm^3 (95% CI: 1.31-4.39) per 1 kg of gestational weight gain, respectively. Additionally, placental weight exhibited a positive correlation with triglyceride (TG) levels (ß = 9.81, 95% CI: 3.28-16.34) and a negative correlation with high-density lipoprotein (HDL-C) levels (ß = - 46.30, 95% CI: - 69.49 to - 23.11). Placental volume also showed a positive association with TG levels (ß = 14.54, 95% CI: 7.69-21.39). Conversely, PFR demonstrated a negative correlation with increasing HDL-C levels (ß = - 0.89, 95% CI: - 1.50 to - 0.27). CONCLUSIONS: Gestational weight gain was significantly correlated with both placental weight and volume. This association was especially pronounced in women who, prior to pregnancy, were underweight or of normal weight. Additionally, TG and HDL-C levels during the mid-trimester were linked to placental development.
Assuntos
Ganho de Peso na Gestação , Placenta , Feminino , Humanos , Gravidez , Peso ao Nascer , Estudos de Coortes , População do Leste Asiático , Lipídeos , Placenta/embriologia , Magreza , Tamanho do ÓrgãoRESUMO
BACKGROUND: It has been suggested that gestational diabetes mellitus (GDM) alters the growth trajectory of a fetus and increases the risk of abnormal birth weight. In spite of this, there is still a significant debate regarding the mode and optimal timing of diagnosing this condition. Our aim was to determine fetal growth velocity and birth biometry in pregnant women with GDM at varying risk levels. METHODS: We conducted a cohort study involving 1023 pregnant women at a maternity hospital in Ma'anshan, China. All women completed an oral glucose tolerance test at 24-28 weeks' gestation. We measured fetal head circumference (HC), femoral length (FL), abdominal circumference (AC), biparietal diameter (BPD), and estimate fetal weight (EFW) by ultrasound at 17, 24, 31, and 35 weeks' gestation, respectively. RESULTS: Overall, 5115 ultrasound scans were performed. Among both low-risk and medium-high-risk pregnant women at 17-24 weeks' gestation, GDM exposure was associated with an increase in fetal growth velocity. Neonates born to women with GDM at medium-high risk had significantly larger birth weights than those born to women without GDM, while this was not observed in women at low risk. CONCLUSION: In medium-high-risk pregnant women, exposure to GDM has a greater effect on the fetus, leading to abnormal fetal growth velocity that lasts beyond week 24. It is evident from our results that the effects of GDM on fetal growth differ between medium-high-risk pregnant women and low-risk pregnant women, and therefore a different screening program based on the risk factor for GDM is warranted.
RESUMO
We aimed to characterize the association between air pollutants exposure and periodontal diseases outpatient visits and to explore the interactions between ambient air pollutants and meteorological factors. The outpatient visits data of several large stomatological and general hospitals in Hefei during 2015-2020 were collected to explore the relationship between daily air pollutants exposure and periodontal diseases by combining Poisson's generalized linear model (GLMs) and distributed lag nonlinear model (DLNMs). Subgroup analysis was performed to identify the vulnerability of different populations to air pollutants exposure. The interaction between air pollutants and meteorological factors was verified in both multiplicative and additive interaction models. An interquartile range (IQR) increased in nitrogen dioxide (NO2) concentration was associated with the greatest lag-specific relative risk (RR) of gingivitis at lag 3 days (RR = 1.087, 95% CI 1.008-1.173). Fine particulate matter (PM2.5) exposure also increased the risk of periodontitis at the day of exposure (RR = 1.049, 95% CI 1.004-1.096). Elderly patients with gingivitis and periodontitis were both vulnerable to PM2.5 exposure. The interaction analyses showed that exposure to high levels of NO2 at low temperatures was related to an increased risk of gingivitis, while exposure to high levels of NO2 and PM2.5 may also increase the risk of gingivitis and periodontitis in the high-humidity environment, respectively. This study supported that NO2 and PM2.5 exposure increased the risk of gingivitis and periodontitis outpatient visits, respectively. Besides, the adverse effects of air pollutants exposure on periodontal diseases may vary depending on ambient temperature and humidity.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Gengivite , Doenças Periodontais , Periodontite , Humanos , Idoso , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/análise , Conceitos Meteorológicos , Doenças Periodontais/etiologia , Doenças Periodontais/induzido quimicamente , Periodontite/induzido quimicamente , Gengivite/induzido quimicamente , Gengivite/epidemiologia , China , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análiseRESUMO
Closely associated with type 2 diabetes mellitus (T2DM), hepatic steatosis and cardiac hypertrophy resulting from chronic excess intake can exacerbate insulin resistance (IR). The current study aims to investigate the pharmacological effects of hirsutine, one indole alkaloid isolated from Uncaria rhynchophylla, on improving hepatic and cardiac IR, and elucidate the underlying mechanism. T2DM and IR in vivo were established by high-fat diet (HFD) feeding for 3 months in C57BL/6 J mice. In vitro IR models were induced by high-glucose and high-insulin (HGHI) incubation in HepG2 and H9c2 cells. Hirsutine administration for 8 weeks improved HFD-induced peripheral hyperglycemia, glucose tolerance and IR by OGTT and ITT assays, and simultaneously attenuated hepatic steatosis and cardiac hypertrophy by pathological observation. The impaired p-Akt expression was activated by hirsutine in liver and heart tissues of HFD mice, and also in the models in vitro. Hirsutine exhibited the effects on enhancing glucose consumption and uptake in IR cell models via activating phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which was blocked by PI3K inhibitor LY294002. Moreover, the effect of hirsutine on promoting glucose uptake and GLUT4 expression in HGHI H9c2 cells was also prevented by Compound C, an inhibitor of AMP-activated protein kinase (AMPK). Enhancement of glycolysis might be another factor of hirsutine showing its effects on glycemic control. Collectively, it was uncovered that hirsutine might exert beneficial effects on regulating glucose homeostasis, thus improving hepatic and cardiac IR, and could be a promising compound for treating diet-induced T2DM.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Resistência à Insulina , Alcaloides , Animais , Cardiomegalia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , UncariaRESUMO
Liriogerphines A-D (1-4, respectively), an unprecedented class of hybrids of germacranolide-type sesquiterpenoids and aporphine-type alkaloids, were isolated from the rare medicinal plant Liriodendron chinense. Their structures were elucidated by comprehensive spectroscopic analyses combined with electronic circular dichroism calculations and X-ray crystallographic data. Biosynthetically, an aza-Michael addition reaction is proposed to be involved in the assemblies of this class of hybrids. Compound 4 exhibited cytotoxicity against leukemia cells via inducing apoptosis and inhibiting Bcl-2 expression.
Assuntos
Alcaloides , Antineoplásicos , Liriodendron , Sesquiterpenos , Alcaloides/química , Alcaloides/farmacologia , China , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacologia , ÁrvoresRESUMO
CONTEXT: S-Propargyl-cysteine (SPRC), an endogenous H2S modulator, exerts anti-inflammatory effects on cardiovascular and neurodegenerative disease, but it remains unknown whether SPRC can prevent autoimmune hepatitis. OBJECTIVE: To evaluate the preventive effect of SPRC on concanavalin A (Con A)-induced liver injury and uncover the underlying mechanisms. MATERIALS AND METHODS: Mice were randomly divided into five groups: control, Con A, SPRC (5 and 10 mg/kg injected intravenously once a day for 7 days), and propargylglycine (PAG; 50 mg/kg injected intraperitoneally 0.5 h before SPRC for 7 days). All mice except the controls were intravenously injected with Con A (20 mg/kg) on day 7. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were evaluated using kits. Inflammatory cytokines (TNF-α and IFN-γ) in the blood and in the liver were detected by ELISA Kit and real-time PCR, respectively. The expression of mitogen-activated protein kinase (MAPK) pathway proteins (p-JNK and p-Akt) and apoptosis proteins (Bax and Bcl-2) was detected using western blotting. RESULTS: SPRC reduced the levels of AST (p < 0.05) and ALT (p < 0.01) and decreased the release of the inflammatory cytokines. Mechanistically, SPRC increased H2S level (p < 0.05) and promoted cystathionine γ-lyase (CSE) expression (p < 0.05). SPRC inhibited the MAPK pathway activation and the apoptosis pathway. All the effects of SPRC were blocked by the CSE inhibitor PAG. CONCLUSIONS: SPRC prevents Con A-induced liver injury in mice by promoting CSE expression and producing endogenous H2S. The mechanisms include reducing the release of inflammatory cytokines, attenuating MAPK pathway activation, and alleviating apoptosis.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Animais , Concanavalina A/toxicidade , Cisteína/farmacologia , Citocinas , Sulfeto de Hidrogênio/metabolismo , CamundongosRESUMO
Caries is a dental disease caused by bacterial infection. If the cause of the caries is detected early, the treatment will be relatively easy, which in turn prevents caries from spreading. The current common procedure of dentists is to first perform radiographic examination on the patient and mark the lesions manually. However, the work of judging lesions and markings requires professional experience and is very time-consuming and repetitive. Taking advantage of the rapid development of artificial intelligence imaging research and technical methods will help dentists make accurate markings and improve medical treatments. It can also shorten the judgment time of professionals. In addition to the use of Gaussian high-pass filter and Otsu's threshold image enhancement technology, this research solves the problem that the original cutting technology cannot extract certain single teeth, and it proposes a caries and lesions area analysis model based on convolutional neural networks (CNN), which can identify caries and restorations from the bitewing images. Moreover, it provides dentists with more accurate objective judgment data to achieve the purpose of automatic diagnosis and treatment planning as a technology for assisting precision medicine. A standardized database established following a defined set of steps is also proposed in this study. There are three main steps to generate the image of a single tooth from a bitewing image, which can increase the accuracy of the analysis model. The steps include (1) preprocessing of the dental image to obtain a high-quality binarization, (2) a dental image cropping procedure to obtain individually separated tooth samples, and (3) a dental image masking step which masks the fine broken teeth from the sample and enhances the quality of the training. Among the current four common neural networks, namely, AlexNet, GoogleNet, Vgg19, and ResNet50, experimental results show that the proposed AlexNet model in this study for restoration and caries judgments has an accuracy as high as 95.56% and 90.30%, respectively. These are promising results that lead to the possibility of developing an automatic judgment method of bitewing film.
Assuntos
Cárie Dentária , Dente , Inteligência Artificial , Cárie Dentária/diagnóstico por imagem , Suscetibilidade à Cárie Dentária , Humanos , Aprendizado de Máquina , Redes Neurais de ComputaçãoRESUMO
Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is therefore time consuming. Additionally, for some images the significant details might not be recognizable due to the different shooting angles or doses. To make the diagnosis process shorter and efficient, repetitive tasks should be performed automatically to allow the dentists to focus more on the technical and medical diagnosis, such as treatment, tooth cleaning, or medical communication. To realize the automatic diagnosis, this article proposes and establishes a lesion area analysis model based on convolutional neural networks (CNN). For establishing a standardized database for clinical application, the Institutional Review Board (IRB) with application number 202002030B0 has been approved with the database established by dentists who provided the practical clinical data. In this study, the image data is preprocessed by a Gaussian high-pass filter. Then, an iterative thresholding is applied to slice the X-ray image into several individual tooth sample images. The collection of individual tooth images that comprises the image database are used as input into the CNN migration learning model for training. Seventy percent (70%) of the image database is used for training and validating the model while the remaining 30% is used for testing and estimating the accuracy of the model. The practical diagnosis accuracy of the proposed CNN model is 92.5%. The proposed model successfully facilitated the automatic diagnosis of the apical lesion.
Assuntos
Redes Neurais de Computação , Dente , Humanos , Radiografia , Dente/diagnóstico por imagemRESUMO
Endothelial angiogenesis plays a vital role in recovery from chronic ischemic injuries. ZYZ-803 is a hybrid donor of hydrogen sulfide (H2S) and nitric oxide (NO). Previous studies showed that ZYZ-803 stimulated endothelial cell angiogenesis both in vitro and in vivo. In this study, we investigated whether the signal transducer and activator of transcription 3 (STAT3) and Ca2+/CaM-dependent protein kinase II (CaMKII) signaling was involved in ZYZ-803-induced angiogenesis. Treatment with ZYZ-803 (1 µM) significantly increased the phosphorylation of STAT3 (Tyr705) and CaMKII (Thr286) in human umbilical vein endothelial cells (HUVECs), these two effects had a similar time course. Pretreatment with WP1066 (STAT3 inhibitor) or KN93 (CAMKII inhibitor) blocked ZYZ-803-induced STAT3/CAMKII activation and significantly suppressed the proliferation and migration of HUVECs. In addition, pretreatment with the inhibitors significantly decreased ZYZ-803-induced tube formations along with the outgrowths of branch-like microvessels in aortic rings. In the mice with femoral artery ligation, administration of ZYZ-803 significantly increased the blood perfusion and vascular density in the hind limb, whereas co-administration of WP1066 or KN93 abrogated ZYZ-803-induced angiogenesis. By using STAT3 siRNA, we further explored the cross-talk between STAT3 and CaMKII in ZYZ-803-induced angiogenesis. We found that STAT3 knockdown suppressed ZYZ-803-induced HUVEC angiogenesis and affected CaMKII expression. ZYZ-803 treatment markedly enhanced the interaction between CaMKII and STAT3. ZYZ-803 treatment induced the nuclear translocation of STAT3. We demonstrated that both STAT3 and CaMKII functioned as positive regulators in ZYZ-803-induced endothelial angiogenesis and STAT3 was important in ZYZ-803-induced CaMKII activation, which highlights the beneficial role of ZYZ-803 in STAT3/CaMKII-related cardiovascular diseases.
Assuntos
Indutores da Angiogênese/farmacologia , Sulfeto de Hidrogênio/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/farmacologia , Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/química , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/administração & dosagem , Sulfeto de Hidrogênio/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/administração & dosagem , Óxido Nítrico/química , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Hydrogen sulfide gas (H2S) has protective effects in the cardiovascular system that includes preventing the development of atherosclerosis when tested in several in vivo models. Plaque instability is a major risk factor for thromboembolism, myocardial infarction, and stroke, so we examined if H2S can promote plaque stability and the potential underlying mechanisms. Apolipoprotein E knockout mice fed an atherogenic diet were administered the exogenous H2S donor sodium hydrosulfide (NaHS) or pravastatin as a positive control daily for 14 weeks. NaHS significantly enhanced plaque stability by increasing fibrous cap thickness and collagen content compared to vehicle-treated controls. NaHS treatment also reduced blood lipid levels and plaque formation. Preservation of plaque stability by NaHS was associated with reductions in vascular smooth muscle cells (VSMCs) apoptosis and expression of the collagen-degrading enzyme matrix metallopeptidase-9 (MMP-9) in plaque. While pravastatin also increased fibrous cap thickness and reduced VSMC apoptosis, but did not enhance plaque collagen or reduce MMP-9 significantly, suggesting distinct mechanisms of plaque stabilization. in vitro, NaHS also decreased MMP-9 expression in macrophages stimulated with tumor necrosis factor-α by inhibiting ERK/JNK phosphorylation and activator protein 1 nuclear translocation. Moreover, H2S reduced caspase-3/9 activity, Bax/Bcl-2 ratio, and LOX-1 mRNA expression in VSMCs stimulated with oxidized low-density lipoprotein. These results suggest that H2S enhances plaque stability and protects against atherogenesis by increasing plaque collagen content and VSMC count. In conclusion, H2S exerts protective effects against atherogenesis at least partly by stabilizing atherosclerotic plaque.
Assuntos
Sulfeto de Hidrogênio/uso terapêutico , Músculo Liso Vascular/efeitos dos fármacos , Placa Aterosclerótica/tratamento farmacológico , Sulfetos/uso terapêutico , Animais , Anticolesterolemiantes/uso terapêutico , Apolipoproteínas E/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Placa Aterosclerótica/genética , Pravastatina/uso terapêutico , Ratos WistarRESUMO
Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif-mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)-conjugated lipopolyplex nanoparticle (RIT-INP)- and Bcl-2-targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell-targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP-G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed.
Assuntos
Anticorpos Monoclonais Murinos/administração & dosagem , Antimetabólitos Antineoplásicos/uso terapêutico , Leucemia Linfocítica Crônica de Células B/terapia , Terapia de Alvo Molecular , Nanopartículas/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , Tionucleotídeos/uso terapêutico , Vidarabina/análogos & derivados , Adjuvantes Imunológicos/antagonistas & inibidores , Animais , Anticorpos Monoclonais Murinos/uso terapêutico , Antimetabólitos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral/transplante , Ilhas de CpG , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Genes bcl-2/efeitos dos fármacos , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas/administração & dosagem , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Oligonucleotídeos Antissenso/farmacocinética , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , RNA Interferente Pequeno/farmacologia , Rituximab , Tionucleotídeos/farmacocinética , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Vidarabina/farmacocinética , Vidarabina/uso terapêutico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We describe here the development and characterization of the physicochemical and pharmacokinetic properties of a novel liposomal formulation for FTY720 delivery, LP-FTY720. The mean diameter of LP-FTY720 was ~157 nm, and the FTY720 entrapment efficiency was ~85%. The liposomal formulation protected FTY720 from degradation in aqueous buffer and showed toxicity in CLL patient B cells comparable to that of free FTY720. Following intravenous injection in ICR mice, LP-FTY720 had an increased elimination phase half-life (~28 vs. ~19 hr) and decreased clearance (235 vs. 778 mL/h/kg) compared to the free drug. Antibodies against CD19, CD20 and CD37 were incorporated into LP-FTY720, which provided targeted delivery to CLL patient B cells and thus achieved higher killing efficacy. The novel liposomal carrier of FTY720 demonstrated improved pharmacokinetic properties, comparable activity, and a potential platform for targeted delivery to CLL by overcoming the limited application of free FTY720 to B malignancy treatment. FROM THE CLINICAL EDITOR: This team reports on a novel liposomal formulation for FTY720 delivery, demonstrating improved pharmacokinetic properties, comparable activity, and a potential platform for targeted delivery to CLL using antibodies incorporated in the liposomes. The method expected to overcome the limited application of free FTY720 to B malignancy treatment.
Assuntos
Sistemas de Liberação de Medicamentos , Leucemia/tratamento farmacológico , Lipossomos/química , Propilenoglicóis/química , Esfingosina/análogos & derivados , Animais , Antígenos CD19/metabolismo , Antígenos CD20/metabolismo , Antígenos de Neoplasias/metabolismo , Apoptose , Linhagem Celular Tumoral , Cloridrato de Fingolimode , Humanos , Camundongos , Camundongos Endogâmicos ICR , Nanomedicina , Esfingosina/química , Tetraspaninas/metabolismo , Água/químicaRESUMO
The balanced crosstalk between miRNAs and autophagy is essential in hypertensive nephropathy. Hydrogen sulfide donors have been reported to attenuate renal injury, but the mechanism is unclear. We aimed to identify and verify the miRNAs and autophagy regulatory networks in hypertensive nephropathy treated with hydrogen sulfide donors through bioinformatics analysis and experimental verification. From the miRNA dataset, autophagy was considerably enriched in mice kidney after angiotensin II (AngII) and combined hydrogen sulfide treatment (H2S_AngII), among which there were 109 differentially expressed miRNAs (DEMs) and 21 hub ADEGs (autophagy-related differentially expressed genes) in the AngII group and 70 DEMs and 13 ADEGs in the H2S_AngII group. A miRNA-mRNA-transcription factors (TFs) autophagy regulatory network was then constructed and verified in human hypertensive nephropathy samples and podocyte models. In the network, two DEMs (miR-98-5p, miR-669b-5p), some hub ADEGs (KRAS, NRAS), and one TF (RUNX2) were altered, accompanied by a reduction in autophagy flux. However, significant recovery occurred after treatment with endogenous or exogenous H2S donors, as well as an overexpression of miR-98-5p and miR-669b-5p. The miR/RAS/RUNX2 autophagy network driven by H2S donors was related to hypertensive nephropathy. H2S donors or miRNAs increased autophagic flux and reduced renal cell injury, which could be a potentially effective medical therapy.
RESUMO
Aims: S-propargyl-cysteine (SPRC) is an endogenous hydrogen sulfide (H2S) donor obtained by modifying the structure of S-allyl cysteine in garlic. This study aims to investigate the effect of SPRC on mitigating cardiac aging and the involvement of jumonji domain-containing protein 3 (JMJD3), a histone demethylase, which represents the primary risk factor in major aging related diseases, in this process, elucidating the preliminary mechanism through which SPRC regulation of JMJD3 occurs. Results: In vitro, SPRC mitigated the elevated levels of reactive oxygen species, senescence-associated ß-galactosidase, p53, and p21, reversing the decline in mitochondrial membrane potential, which represented a reduction in cellular senescence. In vivo, SPRC improved Dox-induced cardiac pathological structure and function. Overexpression of JMJD3 accelerated cardiomyocytes and cardiac senescence, whereas its knockdown in vitro reduced the senescence phenotype. The potential binding site of the upstream transcription factor of JMJD3, sheared X box binding protein 1 (XBP1s), was determined using online software. SPRC promoted the expression of cystathionine γ-lyase (CSE), which subsequently inhibited the IRE1α/XBP1s signaling pathway and decreased JMJD3 expression. Innovations: This study is the first to establish JMJD3 as a crucial regulator of cardiac aging. SPRC can alleviate cardiac aging by upregulating CSE and inhibiting endoplasmic reticulum stress pathways, which in turn suppress JMJD3 expression. Conclusions: JMJD3 plays an essential role in cardiac aging regulation, whereas SPRC can suppress the expression of JMJD3 by upregulating CSE, thus delaying cardiac aging, which suggests that SPRC may serve as an aging protective agent, and pharmacological targeting of JMJD3 may also be a promising therapeutic approach in age-related heart diseases.
RESUMO
Seventeen undescribed sesquiterpene-alkaloid hybrids (liriogerphines E-U, 1-17) were isolated and identified during a further phytochemical investigation on the branches and leaves of Chinese tulip tree (Liriodendron chinense), a rare medicinal and ornamental plant endemic to China. These unique heterodimers are conjugates of germacranolide-type sesquiterpenoids with structurally diverse alkaloids [i.e., aporphine- (1-15), proaporphine- (16), and benzyltetrahydroisoquinoline-type (17)] via the formation of a C-N bond. The previously undescribed structures were elucidated by comprehensive spectroscopic data analyses and electronic circular dichroism calculations. Such a class of sesquiterpene-alkaloid hybrids presumably biosynthesized via an aza-Michael addition is quite rare from terrestrial plants. In particular, the sesquiterpene-benzyltetrahydroisoquinoline hybrid skeleton has never been reported until the present study. All the isolates were evaluated for their cytotoxic effects against a small panel of leukemia cell lines (Raji, Jeko-1, Daudi, Jurkat, MV-4-11 and HL-60), and some of them exhibited considerable activities.
Assuntos
Alcaloides , Antineoplásicos , Liriodendron , Sesquiterpenos , Liriodendron/química , Alcaloides/química , Folhas de Planta/química , Sesquiterpenos/química , Estrutura MolecularRESUMO
PURPOSE: To ascertain whether the integration of raw Corvis ST data with an end-to-end CNN can enhance the diagnosis of keratoconus (KC). METHOD: The Corvis ST is a non-contact device for in vivo measurement of corneal biomechanics. The CorNet was trained and validated on a dataset consisting of 1786 Corvis ST raw data from 1112 normal eyes and 674 KC eyes. Each raw data consists of the anterior and posterior corneal surface elevation during air-puff induced dynamic deformation. The architecture of CorNet utilizes four ResNet-inspired convolutional structures that employ 1 × 1 convolution in identity mapping. Gradient-weighted Class Activation Mapping (Grad-CAM) was adopted to visualize the attention allocation to diagnostic areas. Discriminative performance was assessed using metrics including the AUC of ROC curve, sensitivity, specificity, precision, accuracy, and F1 score. RESULTS: CorNet demonstrated outstanding performance in distinguishing KC from normal eyes, achieving an AUC of 0.971 (sensitivity: 92.49%, specificity: 91.54%) in the validation set, outperforming the best existing Corvis ST parameters, namely the Corvis Biomechanical Index (CBI) with an AUC of 0.947, and its updated version for Chinese populations (cCBI) with an AUC of 0.963. Though the ROC curve analysis showed no significant difference between CorNet and cCBI (p = 0.295), it indicated a notable difference between CorNet and CBI (p = 0.011). The Grad-CAM visualizations highlighted the significance of corneal deformation data during the loading phase rather than the unloading phase for KC diagnosis. CONCLUSION: This study proposed an end-to-end CNN approach utilizing raw biomechanical data by Corvis ST for KC detection, showing effectiveness comparable to or surpassing existing parameters provided by Corvis ST. The CorNet, autonomously learning comprehensive temporal and spatial features, demonstrated a promising performance for advancing KC diagnosis in ophthalmology.