Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiother Oncol ; 174: 23-29, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35788354

RESUMO

PURPOSE: The use of motion mitigation techniques such as breath-hold can reduce the dosimetric uncertainty of lung cancer proton therapy. We studied the feasibility of pencil beam scanning (PBS) proton therapy field delivery within a single breath-hold at PSI's Gantry 2. METHODS: In PBS proton therapy, the delivery time for a field is determined by the beam-on time and the dead time between proton spots (the time required to change the energy and/or lateral position). We studied ways to reduce beam-on and lateral scanning time, without sacrificing dosimetric plan quality, aiming at a single field delivery time of 15 seconds at maximum. We tested this approach on 10 lung cases with varying target volumes. To reduce the beam-on time, we increased the beam current at the isocenter by developing new beam optics for PSI's PROSCAN beamline and Gantry 2. To reduce the dead time between the spots, we used spot-reduced plan optimization. RESULTS: We found that it is possible to achieve conventional fractionated (2 Gy(RBE)/fraction) and hypofractionated (6 Gy(RBE)/fraction) field delivery times within a single breath-hold (<15 sec) for a variety non-small-cell lung cancer cases. CONCLUSION: In summary, the combination of spot reduction and improved beam line transmission is a promising approach for the treatment of mobile tumours within clinically achievable breath-hold durations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Phys Med Biol ; 67(22)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36279860

RESUMO

Objective.In pencil beam scanning particle therapy, a short treatment delivery time is paramount for the efficient treatment of moving targets with motion mitigation techniques (such as breath-hold, rescanning, and gating). Energy and spot position change time are limiting factors in reducing treatment time. In this study, we designed a universal and dynamic energy modulator (ridge filter, RF) to broaden the Bragg peak, to reduce the number of energies and spots required to cover the target volume, thus lowering the treatment time.Approach. Our RF unit comprises two identical RFs placed just before the isocenter. Both RFs move relative to each other, changing the Bragg peak's characteristics dynamically. We simulated different Bragg peak shapes with the RF in Monte Carlo simulation code (TOPAS) and validated them experimentally. We then delivered single-field plans with 1 Gy/fraction to different geometrical targets in water, to measure the dose delivery time using the RF and compare it with the clinical settings.Main results.Aligning the RFs in different positions produces different broadening in the Bragg peak; we achieved a maximum broadening of 2.5 cm. With RF we reduced the number of energies in a field by more than 60%, and the dose delivery time by 50%, for all geometrical targets investigated, without compromising the dose distribution transverse and distal fall-off.Significance. Our novel universal and dynamic RF allows for the adaptation of the Bragg peak broadening for a spot and/or energy layer based on the requirement of dose shaping in the target volume. It significantly reduces the number of energy layers and spots to cover the target volume, and thus the treatment time. This RF design is ideal for ultra-fast treatment delivery within a single breath-hold (5-10 s), efficient delivery of motion mitigation techniques, and small animal irradiation with ultra-high dose rates (FLASH).


Assuntos
Terapia com Prótons , Dosagem Radioterapêutica , Terapia com Prótons/métodos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Suspensão da Respiração
3.
Med Phys ; 49(4): 2183-2192, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35099067

RESUMO

PURPOSE: In proton therapy, the gantry, as the final part of the beamline, has a major effect on beam intensity and beam size at the isocenter. Most of the conventional beam optics of cyclotron-based proton gantries have been designed with an imaging factor between 1 and 2 from the coupling point (CP) at the gantry entrance to the isocenter (patient location) meaning that to achieve a clinically desirable (small) beam size at isocenter, a small beam size is also required at the CP. Here we will show that such imaging factors are limiting the emittance which can be transported through the gantry. We, therefore, propose the use of large beam size and low divergence beam at the CP along with an imaging factor of 0.5 (2:1) in a new design of gantry beam optics to achieve substantial improvements in transmission and thus increase beam intensity at the isocenter. METHODS: The beam optics of our gantry have been re-designed to transport higher emittance without the need of any mechanical modifications to the gantry beamline. The beam optics has been designed using TRANSPORT, with the resulting transmissions being calculated using Monte Carlo simulations (BDSIM code). Finally, the new beam optics have been tested with measurements performed on our Gantry 2 at PSI. RESULTS: With the new beam optics, we could maximize transmission through the gantry for a fixed emittance value. Additionally, we could transport almost four times higher emittance through the gantry compared to conventional optics, whilst achieving good transmissions through the gantry (>50%) with no increased losses in the gantry. As such, the overall transmission (cyclotron to isocenter) can be increased by almost a factor of 6 for low energies. Additionally, the point-to-point imaging inherent to the optics allows adjustment of the beam size at the isocenter by simply changing the beam size at the CP. CONCLUSION: We have developed a new gantry beam optics which, by selecting a large beam size and low divergence at the gantry entrance and using an imaging factor of 0.5 (2:1), increases the emittance acceptance of the gantry, leading to a substantial increase in beam intensity at low energies. We expect that this approach could easily be adapted for most types of existing gantries.


Assuntos
Terapia com Prótons , Ciclotrons , Humanos , Método de Monte Carlo , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica
4.
Med Phys ; 49(3): 1417-1431, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35041207

RESUMO

PURPOSE: Energy changes in pencil beam scanning proton therapy can be a limiting factor in delivery time, hence, limiting patient throughput and the effectiveness of motion mitigation techniques requiring fast irradiation. In this study, we investigate the feasibility of performing fast and continuous energy modulation within the momentum acceptance of a clinical beamline for proton therapy. METHODS: The alternative use of a local beam degrader at the gantry coupling point has been compared with a more common upstream regulation. Focusing on clinically relevant parameters, a complete beam properties characterization has been carried out. In particular, the acquired empirical data allowed to model and parametrize the errors in range and beam current to deliver clinical treatment plans. RESULTS: For both options, the local and upstream degrader, depth-dose curves measured in water for off-momentum beams were only marginally distorted (γ(1%, 1 mm) > 90%) and the errors in the spot position were within the clinical tolerance, even though increasing at the boundaries of the investigated scan range. The impact on the beam size was limited for the upstream degrader, while dedicated strategies could be required to tackle the beam broadening through the local degrader. Range correction models were investigated for the upstream regulation. The impaired beam transport required a dedicated strategy for fine range control and compensation of beam intensity losses. Our current parameterization based on empirical data allowed energy modulation within acceptance with range errors (median 0.05 mm) and transmission (median -14%) compatible with clinical operation and remarkably low average 27 ms dead time for small energy changes. The technique, tested for the delivery of a skull glioma treatment, resulted in high gamma pass rates at 1%, 1 mm compared to conventional deliveries in experimental measurements with about 45% reduction of the energy switching time when regulation could be performed within acceptance. CONCLUSIONS: Fast energy modulation within beamline acceptance has potential for clinical applications and, when realized with an upstream degrader, does not require modification in the beamline hardware, therefore, being potentially applicable in any running facility. Centers with slow energy switching time can particularly profit from such a technique for reducing dead time during treatment delivery.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Síncrotrons , Água
5.
Med Phys ; 48(12): 7613-7622, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655083

RESUMO

PURPOSE: In proton therapy, the potential of using high-dose rates in the cancer treatment is being explored. High-dose rates could improve efficiency and throughput in standard clinical practice, allow efficient utilization of motion mitigation techniques for moving targets, and potentially enhance normal tissue sparing due to the so-called FLASH effect. However, high-dose rates are difficult to reach when lower energy beams are applied in cyclotron-based proton therapy facilities, because they result in large beam sizes and divergences downstream of the degrader, incurring large losses from the cyclotron to the patient position (isocenter). In current facilities, the emittance after the degrader is reduced using circular collimators; however, this does not provide an optimal matching to the acceptance of the following beamline, causing a low transmission for these energies. We, therefore, propose to use a collimation system, asymmetric in both beam size and divergence, resulting in symmetric emittance in both beam transverse planes as required for a gantry system. This new emittance selection, together with a new optics design for the following beamline and gantry, allows a better matching to the beamline acceptance and an improvement of the transmission. METHODS: We implemented a custom method to design the collimator sizes and shape required to select high emittance, to be transported by the following beamline using new beam optics (designed with TRANSPORT) to maximize acceptance matching. For predicting the transmission in the new configuration (new collimators + optics), we used Monte Carlo simulations implemented in BDSIM, implementing a model of PSI Gantry 2 which we benchmarked against measurements taken in the current clinical scenario (circular collimators + clinical optics). RESULTS: From the BDSIM simulations, we found that the new collimator system and matching beam optics results in an overall transmission from the cyclotron to the isocenter for a 70 MeV beam of 0.72%. This is an improvement of almost a factor of 6 over the current clinical performance (0.13% transmission). The new optics satisfies clinical beam requirements at the isocenter. CONCLUSIONS: We developed a new emittance collimation system for PSI's PROSCAN beamline which, by carefully selecting beam size and divergence asymmetrically, increases the beam transmission for low-energy beams in current state-of-the-art cyclotron-based proton therapy gantries. With these improvements, we could predict almost 1% transmission for low-energy beams at PSI's Gantry 2. Such a system could easily be implemented in facilities interested in increasing dose rates for efficient motion mitigation and FLASH experiments alike.


Assuntos
Terapia com Prótons , Ciclotrons , Humanos , Método de Monte Carlo , Prótons , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa