Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 23(24): 6458-69, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027324

RESUMO

It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.


Assuntos
Envelhecimento/sangue , Proteínas Sanguíneas/metabolismo , Distrofina/deficiência , Distrofia Muscular Animal/sangue , Distrofia Muscular de Duchenne/sangue , Adolescente , Envelhecimento/genética , Envelhecimento/patologia , Animais , Biomarcadores/sangue , Proteínas Sanguíneas/genética , Criança , Pré-Escolar , Análise por Conglomerados , Distrofina/genética , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Anotação de Sequência Molecular , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Especificidade da Espécie
2.
Physiol Genomics ; 46(20): 747-65, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25138607

RESUMO

Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m(2) ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation.


Assuntos
Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Exercício Físico , Redes Reguladoras de Genes , MicroRNAs/genética , Músculo Esquelético/patologia , Obesidade/genética , Diabetes Mellitus Tipo 2/complicações , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/ultraestrutura , Obesidade/complicações , Fenótipo , Resistência Física/genética , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Treinamento Resistido , Transcriptoma/genética
3.
Expert Rev Proteomics ; 9(3): 337-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22809211

RESUMO

Studies of the cell secretome have greatly increased in recent years owing to improvements in proteomic platforms, mass spectrometry instrumentation and to the increased interaction between analytical chemists, biologists and clinicians. Several secretome studies have been implemented in different areas of research, leading to the generation of a valuable secretome catalogs. Secreted proteins continue to be an important source of biomarkers and therapeutic target discovery and are equally valuable in the field of microbiology. Several discoveries have been achieved in vitro using cell culture systems, ex vivo using human tissue specimens and in vivo using animal models. In this review, some of the most recent advances in secretome studies and the fields that have benefited the most from this evolving technology are highlighted.


Assuntos
Proteínas/análise , Proteínas/metabolismo , Proteômica/métodos , Líquido Amniótico/química , Biomarcadores Tumorais/análise , Secreções Corporais/química , Líquidos Corporais/química , Exossomos/química , Humanos , Espectrometria de Massas/métodos , Neoplasias/metabolismo
4.
MDM Policy Pract ; 4(2): 2381468319864337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31453360

RESUMO

We discuss a decision-theoretic approach to building a panel-based, preemptive genotyping program. The method is based on findings that a large percentage of patients are prescribed medications that are known to have pharmacogenetic associations, and over time, a substantial proportion are prescribed additional such medication. Preemptive genotyping facilitates genotype-guided therapy at the time medications are prescribed; panel-based testing allows providers to reuse previously collected genetic data when a new indication arises. Because it is cost-prohibitive to conduct panel-based genotyping on all patients, we describe a three-step approach to identify patients with the highest anticipated benefit. First, we construct prediction models to estimate the risk of being prescribed one of the target medications using readily available clinical data. Second, we use literature-based estimates of adverse event rates, variant allele frequencies, secular death rates, and costs to construct a discrete event simulation that estimates the expected benefit of having an individual's genetic data in the electronic health record after an indication has occurred. Finally, we combine medication prescription risk with expected benefit of genotyping once a medication is indicated to calculate the expected benefit of preemptive genotyping. For each patient-clinic visit, we calculate this expected benefit across a range of medications and select patients with the highest expected benefit overall. We build a proof of concept implementation using a cohort of patients from a single academic medical center observed from July 2010 through December 2012. We then apply the results of our modeling strategy to show the extent to which we can improve clinical and economic outcomes in a cohort observed from January 2013 through December 2015.

5.
J Bioanal Biomed ; Suppl 72012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23646235

RESUMO

Quantitation of human dystrophin protein in muscle biopsies is a clinically relevant endpoint for both diagnosis and response to dystrophin-replacement therapies for dystrophinopathies. A robust and accurate assay would enable the use of dystrophin as a surrogate biomarker, particularly in exploratory Phase 2 trials. Currently available methods to quantitate dystrophin rely on immunoblot or immunohistochemistry methods that are not considered robust. Here we present a mass spectrometry based approach to accurately quantitate dystrophin protein in a total protein extract from human muscle biopsies. Our approach uses a combination of stable isotope labeled dystrophin as a spike-in standard, gel electrophoresis and high precision mass spectrometry to detect and quantitate multiple peptides of dystrophin within a complex protein mixture. The method was found highly reproducible and linear over a wide dynamic range, detecting as low as 5% of dystrophin relative to the normal amount in healthy individuals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa