Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(6): 3462-3470, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35235315

RESUMO

Since the first human release of radionuclides on Earth at the end of the Second World War, impact assessments have been implemented. Radionuclides are now ubiquitous, and the impact of local accidental release on human activities, although of low probability, is of tremendous social and economic consequences. Although radionuclide inventories (at various scales) are essential as input data for impact assessment, crucial information on physicochemical speciation is lacking. Among the metallic radionuclides of interest, cobalt-60 is one of the most important activation products generated in the nuclear industry. In this work, a marine model ecosystem has been defined because seawater and more generally marine ecosystems are final receptacles of metal pollution. A multistep approach from quantitative uptake to understanding of the accumulation mechanism has been implemented with the sea urchin Paracentrotus lividus. In a well-controlled aquarium, the day-by-day uptake of cobalt and its quantification in different compartments of the sea urchin were monitored with various conditions of exposure by combining ICP-OES analysis and γ spectrometry. Cobalt is mainly distributed following the rating intestinal tract ≫ gonads > shell spines. Cobalt speciation in seawater and inside the gonads and the intestinal tract was determined using extended X-ray absorption fine structure (EXAFS). The cobalt inside the gonads and the intestinal tract is mainly complexed by the toposome, the main protein in the sea urchin P. lividus. Complexation with purified toposome was characterized and a complexation site combining EXAFS and AIMD (ab initio molecular dynamics) was proposed implying monodentate carboxylates.


Assuntos
Paracentrotus , Animais , Cobalto , Ecossistema , Gônadas , Humanos , Paracentrotus/química , Água do Mar
2.
Environ Sci Technol ; 53(14): 7974-7983, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31187628

RESUMO

Uranium speciation and bioaccumulation were investigated in the sea urchin Paracentrotus lividus. Through accumulation experiments in a well-controlled aquarium followed by ICP-OES analysis, the quantification of uranium in the different compartments of the sea urchin was performed. Uranium is mainly distributed in the test (skeletal components), as it is the major constituent of the sea urchin, but in terms of quantity of uranium per gram of compartment, the following rating: intestinal tract > gonads ≫ test, was obtained. Combining both extended X-ray Absorption Spectroscopy and time-resolved laser-induced fluorescence spectroscopic analysis, it was possible to identify two different forms of uranium in the sea urchin, one in the test, as a carbonato-calcium complex, and the second one in the gonads and intestinal tract, as a protein complex. Toposome is a major calcium-binding transferrin-like protein contained within the sea urchin. EXAFS data fitting of both contaminated organs in vivo and the uranium-toposome complex from protein purified out of the gonads revealed that it is suspected to complex uranium in gonads and intestinal tract. This hypothesis is also supported by the results from two imaging techniques, i.e., Transmission Electron Microscopy and Scanning Transmission X-ray Microscopy. This thorough investigation of uranium uptake in sea urchin is one of the few attempts to assess the speciation in a living marine organism in vivo.


Assuntos
Paracentrotus , Urânio , Animais , Gônadas
3.
Biochem J ; 473(7): 919-28, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831514

RESUMO

The sodium-iodide symporter (NIS) is an integral membrane protein that plays a crucial role in iodide accumulation, especially in the thyroid. As for many other membrane proteins, its intracellular sorting and distribution have a tremendous effect on its function, and constitute an important aspect of its regulation. Many short sequences have been shown to contribute to protein trafficking along the sorting or endocytic pathways. Using bioinformatics tools, we identified such potential sites on human NIS [tyrosine-based motifs, SH2-(Src homology 2), SH3- and PDZ (post-synaptic density-95/discs large tumour suppressor/zonula occludens-1)-binding motifs, and diacidic, dibasic and dileucine motifs] and analysed their roles using mutagenesis. We found that several of these sites play a role in protein stability and/or targeting to the membrane. Aside from the mutation at position 178 (SH2 plus tyrosine-based motif) that affects iodide uptake, the most drastic effect is associated with the mutation of an internal PDZ-binding motif at position 121 that completely abolishes NIS expression at the plasma membrane. Mutating the sites located on the C-terminal domain of the protein has no effect except for the creation of a diacidic motif that decreases the total NIS protein level without affecting its expression at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Simportadores/metabolismo , Motivos de Aminoácidos , Membrana Celular/genética , Células HEK293 , Humanos , Domínios PDZ , Transporte Proteico/fisiologia , Simportadores/genética , Domínios de Homologia de src
4.
Biochim Biophys Acta ; 1838(1 Pt B): 244-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23988430

RESUMO

The sodium/iodide symporter (NIS or SLC5A5) is an intrinsic membrane protein implicated in iodide uptake into thyroid follicular cells. It plays a crucial role in iodine metabolism and thyroid regulation and its function is widely exploited in the diagnosis and treatment of benign and malignant thyroid diseases. A great effort is currently being made to develop a NIS-based gene therapy also allowing the radiotreatment of nonthyroidal tumors. NIS is also expressed in other tissues, such as salivary gland, stomach and mammary gland during lactation, where its physiological role remains unclear. The molecular identity of the thyroid iodide transporter was elucidated approximately fifteen years ago. It belongs to the superfamily of sodium/solute symporters, SSS (and to the human transporter family, SLC5), and is composed of 13 transmembrane helices and 643 amino acid residues in humans. Knowledge concerning NIS structure/function relationship has been obtained by taking advantage of the high resolution structure of one member of the SSS family, the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT), and from studies of gene mutations leading to congenital iodine transport defects (ITD). This review will summarize current knowledge regarding the molecular characterization of NIS.


Assuntos
Proteínas de Bactérias/química , Iodetos/química , Proteínas de Transporte de Sódio-Glucose/química , Sódio/química , Simportadores/química , Glândula Tireoide/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Iodetos/metabolismo , Transporte de Íons , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sódio/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo , Homologia Estrutural de Proteína , Simportadores/genética , Simportadores/metabolismo , Glândula Tireoide/metabolismo , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
5.
Biochim Biophys Acta ; 1808(1): 65-77, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20797386

RESUMO

The sodium/iodide symporter is an intrinsic membrane protein that actively transports iodide into thyroid follicular cells. It is a key element in thyroid hormone biosynthesis and in the radiotherapy of thyroid tumours and their metastases. Sodium/iodide symporter is a very hydrophobic protein that belongs to the family of sodium/solute symporters. As for many other membrane proteins, particularly mammalian ones, little is known about its biochemistry and structure. It is predicted to contain 13 transmembrane helices, with an N-terminus oriented extracellularly. The C-terminal, cytosolic domain contains approximately one hundred amino acid residues and bears most of the transporter's putative regulatory sites (phosphorylation, sumoylation, di-acide, di-leucine or PDZ-binding motifs). In this study, we report the establishment of eukaryotic cell lines stably expressing various human sodium/iodide symporter recombinant proteins, and the development of a purification protocol which allowed us to purify milligram quantities of the human transporter. The quaternary structure of membrane transporters is considered to be essential for their function and regulation. Here, the oligomeric state of human sodium/iodide symporter was analysed for the first time using purified protein, by size exclusion chromatography and light scattering spectroscopy, revealing that the protein exists mainly as a dimer which is stabilised by a disulfide bridge. In addition, the existence of a sodium/iodide symporter C-terminal fragment interacting with the protein was also highlighted. We have shown that this fragment exists in various species and cell types, and demonstrated that it contains the amino-acids [512-643] from the human sodium/iodide symporter protein and, therefore, the last predicted transmembrane helix. Expression of either the [1-512] truncated domain or the [512-643] domain alone, as well as co-expression of the two fragments, was performed, and revealed that co-expression of [1-512] with [512-643] allowed the reconstitution of a functional protein. These findings constitute an important step towards an understanding of some of the post-translational mechanisms that finely tune iodide accumulation through human sodium/iodide symporter regulation.


Assuntos
Simportadores/química , Aminoácidos/química , Bioquímica/métodos , Biotinilação , Membrana Celular/metabolismo , Dimerização , Dissulfetos/química , Células HEK293 , Humanos , Microscopia de Fluorescência/métodos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Iodeto de Sódio/química , Glândula Tireoide/metabolismo
6.
Eur J Endocrinol ; 160(2): 215-25, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19029227

RESUMO

OBJECTIVE: The active transport of iodide into thyroid cells is mediated by the Na(+)/I(-) symporter (NIS) located in the basolateral membrane. Strong intracellular staining with anti-NIS antibodies has been reported in thyroid and breast cancers. Our initial objective was to screen tumour samples for intracellular NIS staining and then to study the mechanisms underlying the altered subcellular localization of the transporters. METHODS: Immunostaining using three different anti-NIS antibodies was performed on paraffin-embedded tissue sections from 93 thyroid or breast cancers. Western blot experiments were carried out to determine the amount of NIS protein in 20 samples. RESULTS: Using three different anti-NIS antibodies, we observed intracellular staining in a majority of thyroid tumour samples. Control immunohistochemistry and western blot experiments indicated that this intracellular staining was due to non-specific binding of the antibodies. In breast tumours, very weak intracellular staining was observed in some samples. Western blot experiments suggest that this labelling is also non-specific. CONCLUSIONS: Our results strongly indicate that the NIS protein level is low in thyroid and breast cancers and that the intracellular staining obtained with anti-NIS antibodies corresponds to a non-specific signal. Accordingly, to increase the efficiency of radiotherapy for thyroid cancers and to enable the use of radioiodine in the diagnosis and therapy of breast tumours, improving NIS targeting to the plasma membrane will not be sufficient. Instead, increasing the expression level of NIS should remain the major goal of this field.


Assuntos
Adenoma/metabolismo , Adenoma/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Simportadores/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Adenocarcinoma Folicular/metabolismo , Adenocarcinoma Folicular/patologia , Animais , Anticorpos Monoclonais , Carcinoma Medular/metabolismo , Carcinoma Medular/patologia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Membrana Celular/metabolismo , Doença de Graves/metabolismo , Doença de Graves/patologia , Doença de Hashimoto/metabolismo , Doença de Hashimoto/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Imuno-Histoquímica , Iodetos/metabolismo , Camundongos , Inclusão em Parafina , Simportadores/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa