Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(61): e202301742, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37548580

RESUMO

Light-activated treatments, such as photodynamic therapy (PDT), provide temporal and spatial control over a specific cytotoxic response by exploiting toxicity differences between irradiated and dark conditions. In this work, a novel strategy for developing near infrared (NIR)-activatable Ru(II) polypyridyl-based photosensitizers (PSs) was successfully developed through the incorporation of symmetric heptamethine cyanine dyes in the metal complex via a phenanthrimidazole ligand. Owing to their strong absorption in the NIR region, the PSs could be efficiently photoactivated with highly penetrating NIR light (770 nm), leading to high photocytotoxicities towards several cancer cell lines under both normoxic and hypoxic conditions. Notably, our lead PS (Ru-Cyn-1), which accumulated in the mitochondria, exhibited a good photocytotoxic activity under challenging low-oxygen concentration (2 % O2 ) upon NIR light irradiation conditions (770 nm), owing to a combination of type I and II PDT mechanisms. The fact that the PS Protoporphyrin IX (PpIX), the metabolite of the clinically approved 5-ALA PS, was found inactive under the same challenging conditions positions Ru-Cyn-1 complex as a promising PDT agent for the treatment of deep-seated hypoxic tumours.


Assuntos
Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Complexos de Coordenação/farmacologia , Corantes , Neoplasias/tratamento farmacológico , Rutênio/farmacologia
2.
J Org Chem ; 88(11): 7128-7140, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37209100

RESUMO

Releasing bioactive molecules in specific subcellular locations from the corresponding caged precursors offers great potential in photopharmacology, especially when using biologically compatible visible light. By taking advantage of the intrinsic preference of COUPY coumarins for mitochondria and their long wavelength absorption in the visible region, we have synthesized and fully characterized a series of COUPY-caged model compounds to investigate how the structure of the coumarin caging group affects the rate and efficiency of the photolysis process. Uncaging studies using yellow (560 nm) and red light (620 nm) in phosphate-buffered saline medium have demonstrated that the incorporation of a methyl group in a position adjacent to the photocleavable bond is particularly important to fine-tune the photochemical properties of the caging group. Additionally, the use of a COUPY-caged version of the protonophore 2,4-dinitrophenol allowed us to confirm by confocal microscopy that photoactivation can occur within mitochondria of living HeLa cells upon irradiation with low doses of yellow light. The new photolabile protecting groups presented here complement the photochemical toolbox in therapeutic applications since they will facilitate the delivery of photocages of biologically active compounds into mitochondria.


Assuntos
Luz , Mitocôndrias , Humanos , Células HeLa , Mitocôndrias/metabolismo , Cumarínicos/química , Fotólise
3.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139255

RESUMO

Organic fluorophores operating in the optical window of biological tissues, namely in the deep-red and near-infrared (NIR) region of the electromagnetic spectrum, offer several advantages for fluorescence bioimaging applications owing to the appealing features of long-wavelength light, such as deep tissue penetration, lack of toxicity, low scattering, and reduced interference with cellular autofluorescence. Among these, COUPY dyes based on non-conventional coumarin scaffolds display suitable photophysical properties and efficient cellular uptake, with a tendency to accumulate primarily in mitochondria, which renders them suitable probes for bioimaging purposes. In this study, we have explored how the photophysical properties and subcellular localization of COUPY fluorophores can be modulated through the modification of the coumarin backbone. While the introduction of a strong electron-withdrawing group, such as the trifluoromethyl group, at position 4 resulted in an exceptional photostability and a remarkable redshift in the absorption and emission maxima when combined with a julolidine ring replacing the N,N-dialkylaminobenzene moiety, the incorporation of a cyano group at position 3 dramatically reduced the brightness of the resulting fluorophore. Interestingly, confocal microscopy studies in living HeLa cells revealed that the 1,1,7,7-tetramethyl julolidine-containing derivatives accumulated in the mitochondria with much higher specificity. Overall, our results provide valuable insights for the design and optimization of new COUPY dyes operating in the deep-red/NIR region.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Humanos , Células HeLa , Fluorescência , Cumarínicos
4.
Molecules ; 28(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894510

RESUMO

Human immunodeficiency virus-type 1 (HIV-1) remains one of the leading contributors to the global burden of disease, and novel antiretroviral agents with alternative mechanisms are needed to cure this infection. Here, we describe an exploratory attempt to optimize the antiretroviral properties of benfluron, a cytostatic agent previously reported to exhibit strong anti-HIV activity likely based on inhibitory actions on virus transcription and Rev-mediated viral RNA export. After obtaining six analogs designed to modify the benzo[c]fluorenone system of the parent molecule, we examined their antiretroviral and toxicity properties together with their capacity to recognize the Rev Recognition Element (RRE) of the virus RNA and inhibit the RRE-Rev interaction. The results indicated that both the benzo[c] and cyclopentanone components of benfluron are required for strong RRE-Rev target engagement and antiretroviral activity and revealed the relative impact of these moieties on RRE affinity, RRE-Rev inhibition, antiviral action and cellular toxicity. These data provide insights into the biological properties of the benzo[c]fluorenone scaffold and contribute to facilitating the design of new anti-HIV agents based on the inhibition of Rev function.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana/metabolismo , RNA Viral/genética , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Conformação de Ácido Nucleico
5.
Biomacromolecules ; 23(7): 2900-2913, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35695426

RESUMO

Integration of photosensitizers (PSs) within nanoscale delivery systems offers great potential for overcoming some of the "Achiles' heels" of photodynamic therapy (PDT). Herein, we have encapsulated a mitochondria-targeted coumarin PS into amphoteric polyurethane-polyurea hybrid nanocapsules (NCs) with the aim of developing novel nanoPDT agents. The synthesis of coumarin-loaded NCs involved the nanoemulsification of a suitable prepolymer in the presence of a PS without needing external surfactants, and the resulting small nanoparticles showed improved photostability compared with the free compound. Nanoencapsulation reduced dark cytotoxicity of the coumarin PS and significantly improved in vitro photoactivity with red light toward cancer cells, which resulted in higher phototherapeutic indexes compared to free PS. Importantly, this nanoformulation impaired tumoral growth of clinically relevant three-dimensional multicellular tumor spheroids. Mitochondrial photodamage along with reactive oxygen species (ROS) photogeneration was found to trigger autophagy and apoptotic cell death of cancer cells.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Cumarínicos/farmacologia , Humanos , Mitocôndrias/metabolismo , Neoplasias/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Polímeros , Poliuretanos/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
J Org Chem ; 87(24): 16351-16367, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441972

RESUMO

Ceramides (Cer) are bioactive sphingolipids that have been proposed as potential disease biomarkers since they are involved in several cellular stress responses, including apoptosis and senescence. 1-Deoxyceramides (1-deoxyCer), a particular subtype of noncanonical sphingolipids, have been linked to the pathogenesis of type II diabetes. To investigate the metabolism of these bioactive lipids, as well as to have a better understanding of the signaling processes where they participate, it is essential to expand the toolbox of fluorescent sphingolipid probes exhibiting complementary subcellular localization. Herein, we describe a series of new sphingolipid probes tagged with two different organic fluorophores, a far-red/NIR-emitting coumarin derivative (COUPY) and a green-emitting BODIPY. The assembly of the probes involved a combination of olefin cross metathesis and click chemistry reactions as key steps, and these fluorescent ceramide analogues exhibited excellent emission quantum yields, being the Stokes' shifts of the COUPY derivatives much higher than those of the BODIPY counterparts. Confocal microscopy studies in HeLa cells confirmed an excellent cellular permeability for these sphingolipid probes and revealed that most of the vesicles stained by COUPY probes were either lysosomes or endosomes, whereas BODIPY probes accumulated either in Golgi apparatus or in nonlysosomal intracellular vesicles. The fact that the two sets of fluorescent Cer probes have such different staining patterns indicates that their subcellular distribution is not entirely defined by the sphingolipid moiety but rather influenced by the fluorophore.


Assuntos
Ceramidas , Diabetes Mellitus Tipo 2 , Humanos , Ceramidas/química , Ceramidas/metabolismo , Células HeLa , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Corantes Fluorescentes/química , Ionóforos
7.
Chemistry ; 27(33): 8547-8556, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33835526

RESUMO

A cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII -COUPY (3), was recently shown as a very promising photosensitizer suitable for photodynamic therapy of cancer. Therefore, the primary goal of this work was to deepen knowledge on the mechanism of its photoactivated antitumor action so that this information could be used to propose a new class of compounds as drug candidates for curing very hardly treatable human tumors, such as androgen resistant prostatic tumors of metastatic origin. Conventional anticancer chemotherapies exhibit several disadvantages, such as limited efficiency to target cancer stem cells (CSCs), which are considered the main reason for chemotherapy resistance, relapse, and metastasis. Herein, we show, using DU145 tumor cells, taken as the model of hormone-refractory and aggressive prostate cancer cells resistant to conventional antineoplastic drugs, that the photoactivated conjugate 3 very efficiently eliminates both prostate bulk (differentiated) and prostate hardly treatable CSCs simultaneously and with a similar efficiency. Notably, the very low toxicity of IrIII -COUPY conjugate in the prostate DU145 cells in the dark and its pronounced selectivity for tumor cells compared with noncancerous cells could result in low side effects and reduced damage of healthy cells during the photoactivated therapy by this agent. Moreover, the experiments performed with the 3D spheroids formed from DU145 CSCs showed that conjugate 3 can penetrate the inner layers of tumor spheres, which might markedly increase its therapeutic effect. Also interestingly, this conjugate induces apoptotic cell death in prostate cancer DU145 cells associated with calcium signaling flux in these cells and autophagy. To the best of our knowledge, this is the first study demonstrating that a photoactivatable metal-based compound is an efficient agent capable of killing even hardly treatable CSCs.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cumarínicos/farmacologia , Humanos , Masculino , Células-Tronco Neoplásicas , Neoplasias da Próstata/tratamento farmacológico
8.
Chemistry ; 26(69): 16222-16227, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32530072

RESUMO

Although photolabile protecting groups (PPGs) have found widespread applications in several fields of chemistry, biology and materials science, there is a growing interest in expanding the photochemical toolbox to overcome some of the limitations of classical caging groups. In this work, the synthesis of a new class of visible-light-sensitive PPGs based on low-molecular weight COUPY fluorophores with several attractive properties, including long-wavelength absorption, is reported. Besides being stable to spontaneous hydrolysis in the dark, COUPY-based PPGs can be efficiently photoactivated with yellow (560 nm) and red light (620 nm) under physiological-like conditions, thereby offering the possibility of unmasking functional groups from COUPY photocages under irradiation conditions in which other PPGs remain stable. Additionally, COUPY photocages exhibit excellent cellular uptake and accumulate selectively in mitochondria, opening the door to the delivery of caged analogues of biologically active compounds into these organelles.

9.
J Org Chem ; 85(9): 6086-6097, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239937

RESUMO

Mitochondrial dysfunction has been associated with several human pathological conditions, including cancer, aging, and neurodegenerative diseases. Thus, the availability of selective fluorescent probes for mitochondria could play an important role in the future for monitoring cellular functions and disease progression. In this work, we have studied how the photophysical properties and subcellular accumulation of nonconventional coumarin-based COUPY fluorophores can be fine-tuned through replacement of the para-pyridinium moiety with several heterocycles. Among them, ortho,para-pyrimidinium substitution provided novel fluorophores with suitable photophysical properties for bioimaging applications, including emission in the far-red to NIR region, large Stokes' shifts, and high photostability. Furthermore, the compounds exhibited excellent cell membrane permeability in living cells and a higher selectivity for mitochondria compared with the parent COUPY fluorophores. Overall, these results provided useful insights into the development of novel mitochondria-targeted fluorescent probes based on small organic molecules, since higher selectivity for this organelle can be achieved through the replacement of conventional N-alkylated pyridinium moieties by the corresponding N-alkylated-ortho,para-pyrimidinium counterparts.


Assuntos
Cumarínicos , Corantes Fluorescentes , Humanos , Ionóforos , Mitocôndrias
10.
J Org Chem ; 84(4): 1808-1817, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30628454

RESUMO

Fluorophores based on organic molecules hold great potential for ligand-targeted imaging applications, particularly those operating in the optical window in biological tissues. In this work, we have developed three straightforward solid-phase approaches based on amide-bond formation or a Cu(I)-catalyzed azide-alkyne click (CuAAC) reaction for labeling an octreotide peptide with far-red emitting coumarin-based COUPY dyes. First, the conjugatable versions of COUPY fluorophores incorporating the required functional groups (e.g., carboxylic acid, azide, or alkyne) were synthesized and characterized. All of them were found fully compatible with Fmoc/ tBu solid-phase peptide synthesis, which allowed for the labeling of octreotide either through amide-bond formation or by CuAAC reaction. A near quantitative conversion was obtained after only 1 h of reaction at RT when using CuSO4 and sodium ascorbate independently of the click chemistry approach used (azido-COUPY/alkynyl-peptide resin or alkynyl-COUPY/azido-peptide resin). COUPY-octreotide conjugates were found stable in cell culture medium as well as noncytotoxic in HeLa cells, and their spectroscopic and photophysical properties were found similar to those of their parent coumarin dyes. Finally, the potential bioimaging applications of COUPY-octreotide conjugates were demonstrated by confocal microscopy through the visualization of living HeLa cells overexpressing the somatostatin subtype-2 receptor.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Cumarínicos/química , Corantes Fluorescentes/química , Peptídeos/química , Receptores de Somatostatina/química , Técnicas de Síntese em Fase Sólida/métodos , Química Click , Células HeLa , Humanos , Ionóforos
11.
Angew Chem Int Ed Engl ; 58(19): 6311-6315, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889300

RESUMO

Although cyclometalated IrIII complexes have emerged as promising photosensitizers for photodynamic therapy, some key drawbacks still hamper clinical translation, such as operability in the phototherapeutic window and reactive oxygen species (ROS) production efficiency and selectivity. In this work, a cyclometalated IrIII complex conjugated to a far-red-emitting coumarin, IrIII -COUPY, is reported with highly favourable properties for cancer phototherapy. IrIII -COUPY was efficiently taken up by HeLa cells and showed no dark cytotoxicity and impressive photocytotoxicity indexes after irradiation with green and blue light, even under hypoxia. Importantly, a clear correlation between cell death and intracellular generation of superoxide anion radicals after visible light irradiation was demonstrated. This strategy opens the door to novel fluorescent photodynamic therapy agents with promising applications in theragnosis.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Cumarínicos/química , Irídio/química , Superóxidos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Células HeLa , Humanos , Luz , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia
12.
J Org Chem ; 83(19): 11519-11531, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30168330

RESUMO

Replacement of electron-donating N,N-dialkyl groups with three- or four-membered cyclic amines (e.g., aziridine and azetidine, respectively) has been described as a promising approach to improve some of the drawbacks of conventional fluorophores, including low fluorescent quantum yields (ΦF) in polar solvents. In this work, we have explored the influence of azetidinyl substitution on nonconventional coumarin-based COUPY dyes. Two azetidine-containing scaffolds were first synthesized in four linear synthetic steps and easily transformed into far-red/NIR-emitting fluorophores through N-alkylation of the pyridine moiety. Azetidine introduction in COUPY dyes resulted in enlarged Stokes' shifts with respect to the N,N-dialkylamino-containing parent dyes, but the ΦF were not significantly modified in aqueous media, which is in contrast with previously reported observations in other fluorophores. However, azetidinyl substitution led to an unprecedented improvement in the photostability of COUPY dyes, and high cell permeability was retained since the fluorophores accumulated selectively in mitochondria and nucleoli of HeLa cells. Overall, our results provide valuable insights for the design and optimization of novel fluorophores operating in the far-red/NIR region, since we have demonstrated that three important parameters (Stokes' shifts, ΦF, and photostability) cannot be always simultaneously addressed by simply replacing a N,N-dialkylamino group with azetidine, at least in nonconventional coumarin-based fluorophores.


Assuntos
Azetidinas/química , Cumarínicos/química , Corantes Fluorescentes/química , Raios Infravermelhos , Transporte Biológico , Cumarínicos/metabolismo , Estabilidade de Medicamentos , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos
13.
J Org Chem ; 83(3): 1185-1195, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29283264

RESUMO

Among the palette of previously described fluorescent organic molecules, coumarins are ideal candidates for developing cellular and molecular imaging tools due to their high cell permeability and minimal perturbation of living systems. However, blue-to-cyan fluorescence emission is usually difficult in in vivo applications due to the inherent toxicity and poor tissue penetration of short visible light wavelengths. Here, we introduce a new family of coumarin-based fluorophores, nicknamed COUPY, with promising photophysical properties, including emission in the far-red/near-infrared (NIR) region, large Stokes shifts, high photostability, and excellent brightness. COUPY fluorophores were efficiently synthesized in only three linear synthetic steps from commercially available precursors, with the N-alkylation of a pyridine moiety being the key step at the end of the synthetic route, as it allows for the tuning of the photophysical properties of the resulting dye. Owing to their low molecular weights, COUPY dyes show excellent cell permeability and accumulate selectively in nucleoli and/or mitochondria of HeLa cells, as their far-red/NIR fluorescence emission is easily detected at a concentration as low as 0.5 µM after an incubation of only 20 min. We anticipate that these coumarin scaffolds will open a way to the development of novel coumarin-based far-red to NIR emitting fluorophores with potential applications for organelle imaging and biomolecule labeling.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Imagem Óptica , Fluorescência , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Raios Infravermelhos , Estrutura Molecular , Células Tumorais Cultivadas
14.
J Org Chem ; 82(10): 5398-5408, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28467700

RESUMO

We report the design, synthesis, and spectroscopic characterization of a series of push-pull chromophores based on a novel coumarin scaffold in which the carbonyl of the lactone function of the original coumarin dyes has been replaced by the cyano(4-nitrophenyl)methylene moiety. The skeleton of the compounds was synthesized by condensation of a thiocoumarin precursor with the corresponding arylacetonitrile derivatives, and their photophysical properties were fine-tuned through the incorporation of electron-withdrawing groups (EWGs) like nitro and cyano at the phenyl ring, leading to absorption in the green to red region. Although fluorescence emission was weakened or even canceled upon introduction of two or three strong EWGs, the emission of the mononitro-containing coumarin derivatives in the red region upon excitation with green light is noticeable, as are their significantly large Stokes shifts. The new coumarin derivatives can be useful as photocleavable protecting groups, as demonstrated through the synthesis and characterization of a series of coumarin-based photocages of benzoic acid. Preliminary photolysis studies with green light have demonstrated that the structure of the coumarin chromophore influences the rate of the uncaging process, opening the way to exploiting these new coumarin scaffolds as caging groups that can be removed with visible light.

15.
J Org Chem ; 81(23): 11556-11564, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27934458

RESUMO

We describe for the first time the synthesis and photochemical properties of a coumarin-caged cyclic RGD peptide and demonstrate that uncaging can be efficiently performed with biologically compatible green light. This was accomplished by using a new dicyanocoumarin derivative (DEAdcCE) for the protection of the carboxyl function at the side chain of the aspartic acid residue, which was selected on the basis of Fmoc-tBu SPPS compatibility and photolysis efficiency. The shielding effect of a methyl group incorporated in the coumarin derivative near the ester bond linking both moieties in combination with the use of acidic additives such as HOBt or Oxyma during the basic Fmoc-removal treatment were found to be very effective for minimizing aspartimide-related side reactions. In addition, a conjugate between the dicyanocoumarin-caged cyclic RGD peptide and ruthenocene, which was selected as a metallodrug model cargo, has been synthesized and characterized. The fact that green-light triggered photoactivation can be efficiently performed both with the caged peptide and with its ruthenocenoyl bioconjugate reveals great potential for DEAdcCE-caged peptide sequences as selective drug carriers in the context of photocontrolled targeted anticancer strategies.


Assuntos
Sistemas de Liberação de Medicamentos , Luz , Oligopeptídeos/química , Cromatografia Líquida , Cumarínicos/química , Fotólise , Análise Espectral
16.
Chemistry ; 21(50): 18474-86, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26662220

RESUMO

A photoactivatable platinum(IV) complex, trans,trans,trans-[Pt(N3 )2 (OH)(succ)(py)2 ] (succ=succinylate, py=pyridine), has been conjugated to guanidinoneomycin to study the effect of this guanidinum-rich compound on the photoactivation, intracellular accumulation and phototoxicity of the pro-drug. Surprisingly, trifluoroacetic acid treatment causes the replacement of an azido ligand and the axial hydroxide ligand by trifluoroacetate, as shown by NMR spectroscopy, MS and X-ray crystallography. Photoactivation of the platinum-guanidinoneomycin conjugate in the presence of 5'-guanosine monophosphate (5'-GMP) led to the formation of trans-[Pt(N3 )(py)2 (5'-GMP)](+) , as does the parent platinum(IV) complex. Binding of the platinum(II) photoproduct {PtN3 (py)2 }(+) to guanine nucleobases in a short single-stranded oligonucleotide was also observed. Finally, cellular uptake studies showed that guanidinoneomycin conjugation improved the intracellular accumulation of the platinum(IV) pro-drug in two cancer cell lines, particularly in SK-MEL-28 cells. Notably, the higher phototoxicity of the conjugate in SK-MEL-28 cells than in DU-145 cells suggests a degree of selectivity towards the malignant melanoma cell line.


Assuntos
Antineoplásicos/química , Guanidina/análogos & derivados , Guanidina/química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , RNA/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Ligantes , RNA/metabolismo
17.
J Org Chem ; 80(4): 2155-64, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25602935

RESUMO

We describe the synthesis and characterization of ametantrone-containing RNA ligands based on the derivatization of this intercalator with two neamine moieties (Amt-Nea,Nea) or with one azaquinolone heterocycle and one neamine (Amt-Nea,Azq) as well as its combination with guanidinoneamine (Amt-NeaG4). Biophysical studies revealed that guanidinylation of the parent ligand (Amt-Nea) had a positive effect on the binding of the resulting compound for Tau pre-mRNA target as well as on the stabilization upon complexation of some of the mutated RNA sequences associated with the development of tauopathies. Further studies by NMR revealed the existence of a preferred binding site in the stem-loop structure, in which ametantrone intercalates in the characteristic bulged region. Regarding doubly-functionalized ligands, binding affinity and stabilizing ability of Amt-Nea,Nea were similar to those of the guanidinylated ligand, but the two aminoglycoside fragments seem to interfere with its accommodation in a single binding site. However, Amt-Nea,Azq binds at the bulged region in a similar way than Amt-NeaG4. Overall, these results provide new insights on fine-tuning RNA binding properties of ametantrone by single or double derivatization with other RNA recognition motifs, which could help in the future design of new ligands with improved selectivity for disease-causing RNA molecules.


Assuntos
Mitoxantrona/análogos & derivados , RNA/química , Sequência de Bases , Sítios de Ligação , Ligantes , Mitoxantrona/síntese química , Mitoxantrona/química , Estrutura Molecular
18.
Org Biomol Chem ; 13(2): 452-64, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25372055

RESUMO

Tau pre-mRNA contains a stem-loop structure involved in the regulation of the alternative splicing of tau protein. We describe here a new family of Tau RNA ligands selected by dynamic combinatorial chemistry based on the combination of ametantrone with small RNA-binding molecules. The most promising compound results from derivatization of one of the side chains of the anthraquinone ring with the small aminoglycoside neamine through a short spacer. This compound binds the RNA target with a high affinity in a preferred binding site, in which the heteroaromatic moiety intercalates in the bulged region of the stem-loop and its side chains and neamine interact with the major groove of the RNA. Importantly, binding of this compound to mutated RNA sequences involved in the onset of some tauopathies such as FTDP-17 restores their thermodynamic stability to a similar or even higher levels than that of the wild-type sequence, thereby revealing its potential as a modulator of Tau pre-mRNA splicing.


Assuntos
Processamento Alternativo , Mitoxantrona/análogos & derivados , Precursores de RNA/genética , RNA Mensageiro/genética , Proteínas tau/genética , Espectroscopia de Ressonância Magnética , Mitoxantrona/química
19.
Mol Pharm ; 10(5): 1964-76, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23510087

RESUMO

A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η(6)-p-cym)RuCl(PPh3)2](+), allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N'-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycin-ruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 µM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 µM). However, the guanidinylated analogue of the neomycin-ruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 µM in DU-145 and IC50 = 11.33 µM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 ≫ 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 µM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 µM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycin-ruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycin-ruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.


Assuntos
Antineoplásicos/química , Neomicina/análogos & derivados , Compostos Organometálicos/química , Rutênio/química , Aminoglicosídeos/química , Aminoglicosídeos/farmacocinética , Aminoglicosídeos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Transporte Biológico Ativo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Células MCF-7 , Masculino , Neomicina/farmacocinética , Neomicina/farmacologia , Compostos Organometálicos/farmacocinética , Compostos Organometálicos/farmacologia , RNA Neoplásico/efeitos dos fármacos , RNA Neoplásico/metabolismo , Rutênio/farmacocinética , Rutênio/farmacologia
20.
J Org Chem ; 78(21): 10666-77, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24087986

RESUMO

The design and synthesis of two Janus-type heterocycles with the capacity to simultaneously recognize guanine and uracyl in G-U mismatched pairs through complementary hydrogen bond pairing is described. Both compounds were conveniently functionalized with a carboxylic function and efficiently attached to a tripeptide sequence by using solid-phase methodologies. Ligands based on the derivatization of such Janus compounds with a small aminoglycoside, neamine, and its guanidinylated analogue have been synthesized, and their interaction with Tau RNA has been investigated by using several biophysical techniques, including UV-monitored melting curves, fluorescence titration experiments, and (1)H NMR. The overall results indicated that Janus-neamine/guanidinoneamine showed some preference for the +3 mutated RNA sequence associated with the development of some tauopathies, although preliminary NMR studies have not confirmed binding to G-U pairs. Moreover, a good correlation has been found between the RNA binding affinity of such Janus-containing ligands and their ability to stabilize this secondary structure upon complexation.


Assuntos
Guanina/química , RNA/química , Uracila/química , Pareamento Incorreto de Bases , Pareamento de Bases , Dicroísmo Circular , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa