Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118628, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536237

RESUMO

Organic and inorganic soil amendments are used to increase crop yields and fertilizer efficiency, as well as to improve the physical and biological properties of soil, increase carbon sequestration, and restore contaminated and saline soils. The present study aimed to evaluate the effect of various zeolite composites mixed with either lignite or leonardite on the biomass production of spring wheat and rapeseed and their root morphology. A pot experiment involved the application of the following treatments: zeolite-carbon, zeolite-vermiculite composites, both mixed with lignite or leonardite, and a control treatment with no amendments. Inorganic composites were applied in a dose of 3% and 6%. The study also included an analysis of the root morphometric parameters and aboveground biomass of spring wheat and rapeseed. The lowest productivity was observed when both crops were not enriched with fertilizers or other amendments, 24.92 g per pot and 29.83 g per pot for spring wheat and rapeseed, respectively. The application of mineral fertilizers in combination with zeolite-carbon composite gave the highest aboveground biomass of spring wheat, 110.11 g per pot. Both zeolite-carbon and zeolite-vermiculite composites modified the morphological parameters of roots, with the control treatment showing the lowest root length and dry matter. Although mineral fertilization was found to have a positive impact root development in relation to untreated control, the treatment amended with zeolite-carbon composite and leonardite exhibited the highest root length and biomass of spring wheat. No other soil amendments improved the properties of rapeseed roots.


Assuntos
Brassica napus , Zeolitas , Solo , Triticum , Biomassa , Fertilizantes/análise , Carbono
2.
Sci Rep ; 13(1): 14227, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648836

RESUMO

The major cause of soil degradation (contamination, erosion, compaction) is closely linked to agriculture, i.e., unsustainable agriculture practices, which are reflected in the depletion of the soil organic carbon pool, loss in soil biodiversity, and reduction of C sink capacity in soils. Therefore, the agricultural practice of applying carbon-rich materials into the soil is an attractive solution for climate change mitigation and soil ecosystem sustainability. The paper aimed to evaluate the effectiveness of the addition of organic-mineral mixtures to the mineral salts (NPK), including the exogenous organic matter (lignite) mixed with zeolite-carbon (NaX-C) or zeolite-vermiculite (NaX-Ver) composites in the restoration of soils contaminated with PAHs. The addition of zeolite composites to fertilizer resulted in a significant reduction in soil PAH levels and a corresponding reduction in plant tissue content, without compromising yields, compared to the control and separate application of NPK. A Significant correlation between PAHs and pHH2O, pHKCl, EC and dehydrogenase activity (DhA) was found in soils. The addition of zeolite composites with lignite significantly reduced the content of PAHs in straws, especially following the application of NaX-C. However, in the case of grains, the highest percentage reduction in comparison to NPK was observed for the highest dose of NaX-Ver.

3.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984022

RESUMO

Waste fly ash, with both low (with the addition of vermiculite) and high contents of unburned coal, were subjected to hydrothermal syntheses aiming to obtain zeolite composite materials-zeolite + vermiculite (NaX-Ver) and zeolite + unburned carbon (NaX-C). The composites were compared with parent zeolite obtained from waste fly ash with a low content of unburned carbon (NaX-FA). In this study, the physicochemical characteristics of the obtained materials were evaluated. The potential application of the investigated zeolites for the adsorption of ammonium ions from aqueous solutions was determined. Composite NaX-Ver and parent zeolite NaX-FA were characterized by comparable adsorption capacities toward ammonium ions of 38.46 and 40.00 mg (NH4+) g-1, respectively. The nearly 2-fold lower adsorption capacity of composite NaX-C (21.05 mg (NH4+) g-1) was probably a result of the lower availability of ion exchange sites within the material. Adsorbents were also regenerated using 1 M NaCl solution at a pH of 10 and subjected to 3 cycles of adsorption-desorption experiments, which proved only a small reduction in adsorption properties. This study follows the current trend of waste utilization (fly ash) and the removal of pollutants from aqueous solutions with respect to their reuse, which remains in line with the goals of the circular economy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa