Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 300(4): G586-97, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21212325

RESUMO

The regulation of intestinal epithelial cell adhesion and migratory properties is often compromised in inflammatory bowel disease (IBD). Despite an increasing interest in bone morphogenetic protein (Bmp) signaling in gut pathologies, little is known of the specific roles played by individual Smads in intestinal epithelial functions. In the present study, we generated a mouse model with deletion of Smad5 transcriptional effector of the Bmp signaling pathway exclusively in the intestinal epithelium. Proliferation, migration, and apical junctional complex (AJC) protein expression were analyzed by immunofluorescence and Western blot. Human intestinal biopsies from control and IBD patients were analyzed for SMAD5 gene transcript expression by quantitative PCR (qPCR). Smad5(ΔIEC) and control mice were subjected to dextran sulfate sodium (DSS)-induced experimental colitis, and their clinical and histological symptoms were assessed. Loss of Smad5 led to intestinal epithelial hypermigration and deregulation of the expression of claudin-1 and claudin-2. E-cadherin was found to be equally expressed but displaced from the AJC to the cytoplasm in Smad5(ΔIEC) mice. Analysis of SMAD5 gene expression in human IBD patient samples revealed a significant downregulation of the gene transcript in Crohn's disease and ulcerative colitis samples. Smad5(ΔIEC) mice exposed to experimental DSS colitis were significantly more susceptible to the disease and had impaired wound healing during the recovery phase. Our results support that Smad5 is partly responsible for mediating Bmp signals in intestinal epithelial cells. In addition, deficiency in epithelial Smad5 leads to the deregulation of cell migration by disassembling the AJC with increasing susceptibility to experimental colitis and impairment in wound healing.


Assuntos
Colite/metabolismo , Suscetibilidade a Doenças/metabolismo , Junções Intercelulares/metabolismo , Mucosa Intestinal/metabolismo , Proteína Smad5/metabolismo , Animais , Western Blotting , Movimento Celular/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Suscetibilidade a Doenças/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Imunofluorescência , Humanos , Junções Intercelulares/genética , Junções Intercelulares/patologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Proteína Smad5/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa